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ABSTRACT 
Many real-world domains are relational in nature, consisting of a 
set of objects related to each other in complex ways. Matrix 
factorization is an effective method in relationship prediction, 
However, traditional matrix factorization link prediction methods 
can only be used for non-negative matrix. In this paper, a 
generalized framework, itelliPrediction, is presented that is able to 
deal with positive and negative matrix.  The novel itelliPrediction 
framework is domain independent and with high precision. We 
validate our approach using two different data sources, an open data 
sets and a real-word dataset, the result demonstrated that the quality 
of our approach is comparable to, if not better than, exiting state of 
the art relation predication framework. 

Categories and Subject Descriptors 
E.1. [DATA STRUCTURES]: Graphs and networks 

General Terms 
Algorithms, Design, Experimentation 

Keywords 
Social Networks; Machine Learning; Relation Prediction; Matrix 
Factorization 

1. INTRODUCTION 
In nature, networks rarely appear isolate, and objects are 
interpedently connected. Users are virtually connected through a 
network of different types of linkages in social media. Thus, there 
has been an increasing interest in predicting multi-relation data that 
contain multiple entity type and serval relations. As an example, 

relation network in social media, such as Weibo, where user 
relation can be defined as relation network. A user relation network 
among social media is a kind of social network, use this network 
online users can get reliable information for e-commerce, trust 
assessment and garbage behavior detection. 

When modelling relationship between pairs of individuals, positive 
relationships are representative of liking, loving, valuing or 
approving someone, and negative relationships are representative 
of disvaluing, disapproving or negatively valuing. For a given 
directed link from user i to j in a social network, we define its sign 
to be trust (or distrust) if it expresses a positive (or negative) 
attitude from user i to j. We call such network with both trust and 
distrust links relation network. 

Perhaps the most basic yet significant belief in relation network is 
structural balance theory [27] and low-rank matrix factorization 
model [29]. Structural balance theory states that users in relation 
network tend to follow patterns such as “an enemy of my friend is 
my enemy” and “an enemy of my enemy is my friend” and so on 
[28]. Low-rank matrix factorization model make relation 
predication in an unsupervised scenario by seeking low-rank 
representations for users. Structural balance theory aims to infer the 
unknown relationship between two entities by learning from 
balance information of relation network. Hence, it is not applicable 
to the relation network, which contains many isolated islands. 
However, the iterative method for low-rank matrix decomposition 
can only decompose non-negative matrices, so we can only predict 
the trust relation in the relation network. Therefore, these methods 
have inherent limitations. In our work, we aim to develop a 
practical framework for the problem of relation prediction among 
online users in the very near future by using a new framework 
itelliPrediction. ItelliPrediction extended the none-negative matrix 
factorization by introducing biological intelligence algorithm, 
hybrid particle swarm optimization. 

In this paper, we did some work in trust link prediction, we predict 
the type of links among users in social media sites. Fig. 1 shows an 
example to illustrate the intuition behind this idea. Fig. 1 is the user 
relation network of wikiElec, the network contains trust relations 
(mark as +), unknown or missing relations (mark as 0) distrust 
relations (mark as -). We predict if there is a relationship between 
node i and node j, and if so, what the relationship is. Our main 
contributions are summarized as follows: 
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1. We study the effectiveness of none-negative matrix 
factorization method for the user relationship prediction 
problem, inspired by their success in trust prediction [9,18] 
and social recommendation [29]. 

2. We provide an approach to exploit matrix factorization via 
biological intelligence. 

3. We propose an unsupervised framework, itelliPrediction, for 
the problem of user relation prediction, incorporating matrix 
factorization with hybrid particle swarm optimization. 

4. We evaluate itelliPrediction extensively using two different 
data sources, an open data sets and a real-word dataset. 

Figure 1. User Relation network of wikiElec. 

2. RELATED WORK 
Recently, for mining a relation network, researchers have made a 
variety of studies including but not limited to trust-aware 
recommendation systems [5, 11, 15, 16], trust diffusion analysis [9, 
17] and trust-link prediction [18]. At a high level, existing link 
prediction models fall into two classes: unsupervised and 
supervised [25]. Unsupervised models compute scores for pairs of 
nodes based on topological properties of the graph. Supervised 
models, on the other hand, attempt to be directly predictive of link 
behavior by lining a parameter vector 𝜃 via 

 
( , )

1 ˆ( , ( )) ( )min ij ij
i j

G G


 


   (1) 

where ˆ ( )Gij   is the model’s predicted score for the dyad ( , )i j , 
( , )   is a loss function, and ( )   is a regularization term that 

prevents overfitting. The choice of these terms depends on the type 
of model. We list some popular approaches: 

Path Probability and Spring Embedding (PPSE) [23]: A method 
for computing trust and distrust, which is provided by Thomas 
DuBois, et al. He does that by combining an inference algorithm 
that relies on a probabilistic interpretation of trust based on random 
graphs with a modified spring-embedding algorithm. 

Transfer Learning (TL) [24]: An algorithm that adapts the 
transfer learning approach to leverage the edge sign information 
from the source network. Because the network may have a different 
related joint distribution of edge instances and their class labels, 
there is no predefined feature vector for edge instances in a signed 

                                                                 
1 The wikiElec dataset is available from http://snap.stanford.edu/data/wiki-Elec.html 

2 The Slashdot dataset is available from http://snap.stanford.edu/data/soc-Slashdot0811.html 

network. Ye Jihang, et. al adopt an AdaBoost-like transfer learning 
algorithm adjoin with instance weighting to utilize more useful 
training instances in the source network for prediction. 

Homophily Effect [9]: Presented by Tang Jiliang, et al, homophily 
is a social theory, and the effect suggests that users with similar life 
habit are likely to set up trust relations, while users with trust 
relations are more similar in behaviors. Matsutani, et al [18] 
extended the method by adding user activity information for trust-
link prediction and applied it to analyze user behavior in an item-
review site. 

Matrix Factorization for Link Sign Prediction (MF-LiSP) [19]: 
In view of the global behavior of the different users’ needs to be 
accounted for, albeit the local interactions do play a significant role 
too [26]. Kuter, et al presents a new method called MF-LiSP, which 
employs a trace norm regularizer with a particularly suited variation 
of the pair-wise hinge loose to approximate the given matrix. His 
experiments show that the method is right and advanced in binary 
classification, but this method does not apply to multiple 
classification. 

Nevertheless, most of them focus on trust relations and applied it 
into various applications. However, in reality we should think more, 
in international relations exist hostile, neutral and alliance, in the 
field of biology, there exists a promotion and inhibition relationship 
between neurons, in online voting sites, there is an approval and 
disapproval standpoint among users. Considering these situations, 
we should distinguish users what relationship they have established. 

3. PRELIMINARIES 
3.1 Data Analysis 
For this study, we collect two datasets, i.e., wikiElec1 and Slashdot2. 
For a Wikipedia editor to become an administrator, a request for 
amidships must be submitted, either by the candidate or by another 
community member. Subsequently, any Wikipedia member may 
cast a supporting, neutral, or opposing vote; snap.stanford.edu 
crawled and parsed all votes as wikiElec. Slashdot is a technology-
related news website and in 2002, Slashdot introduced the Slashdot 
Zoo feature, which allows users to tag each other as friends or foes.  

Table 1. Statistics of the Datasets 
 WikiElec Slashdot 
# of Users 456 3367 
# of Out-trust Relations 26313 126224 
# of Neutrality Relations 1858 - 
# of Out Distrust Relations 8581 74748 
# of In-trust Relations 27952 100241 
# of In-distrust Relations 7910 40877 
Max # of Out-trust Relations 827 387 
Max # of Out-distrust Relations 363 400 
Max# of In-trust Relations 417 1389 
Max# of In-distrust Relations 173 498 
Relation Network Density 0.078303 0.005165 

We rank all pairs of users with in-trust (out-trust) relations and in-
distrust (out-trust) relations in descending order and we pick up 
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users with both in-links and out-links. Next, we filter users with 
less than two out-link relations and two in-link relations, 
respectively, so that we can get sufficient historical information for 
the purpose of evaluation. We found out that, on average users in 
wikiElec have 20.25 out-trust relations, 7.18 out-distrust relations, 
20.49 in-trust relations and 7.00 in-distrust relations. Users in 
Slashdot have 11.10 out-trust relations, 8.26 out-distrust relations, 
10.76 in-trust relations, and 7.59 in-distrust relations. 

The distribution of in-trust, in-distrust, out-trust and out-distrust for 
each user are shown in Fig. 2. We can see that most users have few 
relations, while few users have high number of in or out relations. 
It indicates the typical online social networks follow the power-law 
distribution. 

Figure 2. Out-link and In-link Distributions in WikiElec 

3.2 Use Low-rank Matrix Factorization 
Method to Predict User Relation 
Low-rank matrix factorization can be used in many occasions like 
collaborative prediction [1], CT reconstruction [2], deep network 
training [3], collective filtering [4-5] and document clustering [6-
7]. User relation prediction refers to the task of predicting relations 
in the coming future of every pairs of users. Let { , , }1 2U u u un   be 

the set of users and n represent the number of users. Let n nG 
  

represent the users’ relation matrix, matrix element set is as follows: 

 

1,

( , ) 1,

0,

if u trust ui j
G i j if u distrust ui j

otherwise




 



  (2) 

We note that among all users in the dataset few users can establish 
relations, result in G very spare and low rank. The low-rank matrix 
factorization model try to seeks a new representation of matrix G, 

( )n dM d n  by solving the following problem shows in Eq. 
(3), 

 
2

min
,

G MNM
FU V

 T   (3) 

n
F•   is the n norm of a matrix and d dN   captures the 

correlations among their low-rank representation such as 
( , ) ( ,:) ( ,:)G i j M i NM j T  . In order to prevent over fitting we add 

2 smoothing factor  and   to M and N, respectively. Then we get 
a new function, 

 
2 2 2

,
min ( 0, 0)

F FFU V
G MNM M N       T   (4) 

According to [8], can be explained as an adjoin matrix, which 
indicates user relation structures.  

The matrix factorization method has many advantages [9]: (1) it is 
very flexible and allow us to include prior knowledge and we will 
apply it into our future work; (2) it can be applied to find a well-
worked optimal solution, among the vast amounts of user 
relationships; (3) it has a nice probabilistic interpretation with 
Gaussian noise. 

4. FUNDAMENTAL ALGORITHM 
There are several matrix factorization methods such as the gradient 
descent method [9], multiplicative update algorithms and 
alternating least squares algorithm [10], but these algorithms will 
convergence only when the matrix is nonnegative. In consideration 
of our relation matrix containing both positive and negative 
elements, the methods mentioned above are not directly applicable 
any more. In this section, we provide a basic matrix factorization 
scheme, coupled with hybrid particle swarm optimization, that 
encompasses relation prediction. 

4.1 Description of Hybrid Particle Swarm 
Optimization (HPSO) 
Particle swarm optimization (PSO) is a population based algorithm, 
which exploits a set of potential solutions to the optimization 
problem, which is developed by Dr. Eberhart and Kennedy in 1995, 
inspired by social behavior of birds flocking or fish schooling. PSO 
can deal with non-linear optimization problems in non-convex 
domains [20]. We called each potential solution as a “particle”, and 
the set of potential solutions in each iteration step forms the swarm 
[21]. 

HPSO updated the way from the traditional PSO algorithm by 
tracking extremum to update the particle’s location. HPSO 
introduced crossover and mutation into PSO. Search for the optimal 
solution by apply crossover and mutation over the particle extremes 
and the colony extremes. 

4.2 Phases of Hybrid Particle Swarm 
Optimization Algorithm 
In general, the hybrid particle swarm optimization algorithm has 
the following steps [22]: 

Initialization: an initial population is randomly generated, which 
consists of particles, which represent possible solutions of the 
problem. 

Update particles: update the velocity and position of each particle 
use crossover and mutation.  If their previous velocities are very 
close to zero, then all the particles will stop moving once they catch 
up with the global best particle 

End condition: the HPSO algorithm will stop when the optimal 
solution reached or there are little changes of the optimal solution. 

4.3 The proposed method 
In order to combine the matrix factorization problem with the 
HPSO problem, we have to process the elements in the matrix 
factorization problem and make some assumptions. First, we 
assume that every element of the decomposition matrix represents 
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the gene information of the individual and the decomposition 
matrix itself is an individual. Next, we assume that a complete 
iteration of the relationship matrix is the process of the evolution of 
the individual. Above all, we can preliminarily combine the matrix 
factorization problem with the HPSO problem. 

With the definition of low-rank matrix factorization link prediction 
is to solve the optimization problem proposed in Eq. (4), and if we 
remove the constants in the objective function, then we can get Eq. 
(5), 

 ( 2 ) ( ) ( )

( 0, 0)

F Tr G MNM MN M MNM Tr MM NN 

 

    

 

T T T T T T T

  (5) 

The coupling between M and N makes the problem presented in Eq. 
(4) difficult to find optimal solutions simultaneously. In this work, 
we introduced the HPSO for Eq. (5). 

First, we initialize the population randomly, then we calculate the 
fitness of each particle, finally we update the particle by using the 
framework, itelliPrediction. The itelliPrediction is based on HPSO 
and matrix factorization. The algorithm will stop when there is little 
change for the best value or the algorithm reached its predefined. 
The detailed algorithm of proposed framework, itelliPrediction, is 
shown in Algorithm 1. 

 
Where G is users’ relations matrix. M and N are the relative 
minimum. NIDN, Pc, Pm and MAXGEN represent the population 
size, the probability of recombination, the probability of mutation. 
Where α and β are introduced to control the capability on M and N, 
respectively. 

For the function Fitness (), we first calculate the fitness value of 
each chromosome Ck, which is represented by eval(Ck): 

  
2 2 2( )k

k k k k k kF FF
eval C f x G M N M M N     T  (6) 

Then we calculate the fitness value of the whole population: 

 1

1

( )

( )

NIDN

kNIDN
k

k k

eval C
F

eval C







   (7) 

Next we calculate the corresponding selection probability of each 
chromosome Ck: 

 1
( )

( )

NIDN

k
k

k
k

eval C
P

F eval C

•


  (8) 

Finally, we calculate the cumulative probability of each 
chromosome Qk: 

 
1

1,2,
k

k j
j

Q P j


    (9) 

For the function Select (), on the basis of fitness, calculated above, 
we adopt a roulette method based on linear ranking selection. For 
the function Recombine (), we bring single-point of intersection to 
restructure the chromosomes, the probability of recombination Pc 
is given by users manually. For the function ParticleMutate (), we 
adopt the commonly used bit mutation operator. 

The optimal M and N, is a representation of G. As M and N contain 
both positive and negative value, the new low-rank matrix G’ is a 
representation of a singed network which indicates users’ 
relationship. The relationship of ui and uj are indicated by  ( , )G i j    
and ( , )G i j  , respectively. 

5. EXPERIMENT 
We conduct experiments to evaluate the proposed framework. First 
we give our experiment setting and evaluation metric, then we 
briefly discuss the baseline algorithm against which we intended to 
compare the different types of relation prediction methods, finally 
we conduct the experiment on different datasets to show the 
adaptability and flexibility of the proposed framework. 

5.1 Experiment Settings 
The experiment setting of the dataset is shown in Fig. 3, where  

 , ( , ) 1 0i jA u u G i j   and  , ( , ) 9i jB u u G i j    are the 

user relation set. A represents users with relations while B indicate 
users without relations. Conforming the time when users build up 
their relations, we arranged the pairs both in A and B in a 
descending order. We divided A into two parts, the first x% as 
training set E to train data and the remaining 1-x% as testing set O 
for prediction. We set ( , ) 0, ,i iG i j u u O     in O to remove the 
user relation type, and G’ is the new representation of G, then G’ 
will input into each predictor. We varied  x as {50, 60, 70, 80, 90} . 

Figure 3. Separation of the dataset. A is the training set of 
pairs with relations, and B is the testing set without relations. 

Algorithm 1. The framework of link prediction 

Input: G, U, V, NIDN, Pc, Pm, MAXGEN, α, β 
Output: G’ 
1: Initial the population per NIDN 
2: Initialize chromosomes  
3: Replace one of the chromosomes randomly with M and N 

4: while Not reach the MAXGEN and not meet the end 
condition do 

5:  Fitness () 

6:  Record the best chromosome per individual fitness, 
remember as Bindividual  

7:  Delete the worst chromosome from the population. 
8:  Select ()  
9:  Recombine () 
10:  ParticleMutate () 
11:  Insert the Bindividual into the population  
12: end while 
13: Set G’ = MNMT 

14: Return G’ 

2 pairs of usersn A B

%x 1 %x

E O
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We rank user couples in B O  in decreasing order for each 
predictor, and pick up the first |Qh| and the last |Ql|, as the testing 
set for user relation prediction, denoted as Ch and Cl respectively. 
Then the prediction accuracy (PA) can be defined as, 

 h h l l
h l

h l

Q C Q C
PA PA

Q Q
 

    (10) 

Where |∙| represent the size of a set. 

5.2 Baseline Methods 
Next, we compare our method against various baseline algorithm 
as follows:  

Weighted Random(WR): Note that the distribution of trust and 
distrust are very spare, we also predicted the type of users’ relation 
as trust or distrust in proportion to the respective share, and we refer 
to this as the weighted method.   

Path Probability and Spring Embedding (PPSE) [23]: A method 
for computing trust and distrust, which is provided by Thomas 
DuBois, et al. He does that by combining an inference algorithm 
that relies on a probabilistic interpretation of trust based on random 
graphs with a modified spring-embedding algorithm. 

Transfer Learning (TL) [24]: An algorithm that adapt the transfer 
learning approach to leverage the edge sign information from the 
source network. Because the network may have a different related 
joint distribution of edge instances and their class labels, what is 
more there is no predefined feature vector for edge instances in a 
signed network. Ye Jihang, et. al adopt an AdaBoost-like transfer 
learning algorithm adjoin with instance weighting to utilize more 
useful training instances in the source network for prediction. 

5.3 Experimental results 
First we conduct the experiment on WikiElec, all experiments are 
averaged over 30 runs with NIDN=50, Pc=0.9, Pm=0.1, 
MAXGEN=1000, α=0.5, β=0.5. Results are shown in Figs. 4. 

(a)Process of Finding the Optimal Solution 

(b) Accuracy of Trust Prediction 

(c) Accuracy of Distrust Prediction 

Figure 4. The Prediction Process and The Prediction Result of 
WikiElec 

Fig.4(a) shows the process of how we find the optimal solution via 
HPSO algorithm. We have a total iteration of 100 times. Fig. 4(b-
c) shows the accuracy of trust prediction and distrust prediction of 
different predictors. In the trust prediction experiment, overall, our 
framework is better than others. In the distrust prediction 
experiment, our method always achieves the highest accuracy, 
followed by TL, PPSE and WR. This because the latent features 
can be captured the common structural patterns among online users, 
despite the different distributions in users’ relation. Thus, the new 
representation matrix G’, can indicate the users’ relationship 
properly. 

The next experiment, we apply itelliPrediction on Slashdot. The 
results are demonstrated in Fig. 5. The parameters are as follows: 
NIDN=20, Pc=0.87, Pm=0.02, MAXGEN=1000, α=0.4, β=0.6. 
The first observation is that all method performs the best in trust 
relation prediction. It indicates that with the network density greatly 
influenced the results. The gradient method put forward in this 
paper has better accuracy and stability, especially in distrust 
prediction. 

(a) Process of Finding the Optimal Solution 

(b) Accuracy of Trust Prediction 
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(c) Accuracy of Distrust Prediction 

Figure 5. The Prediction Process and the Prediction Result of 
Slashdot. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed a framework, itelliPrediction, 
which combined hybrid particle swarm optimization algorithm and 
matrix factorization for online user relation prediction. First we 
analyze the datasets and introduced low-rank matrix factorization. 
Next, we extended the method of matrix factorization, so it can be 
applied to factorize matrix containing both positive values and 
negative values. Then we conduct experiment on WikiElec. The 
result shows good in trust prediction and distrust prediction. Finally, 
extensive experiments are conducted to evaluate the scalability and 
the stability of the proposed framework. 

This work leaves few directions for future work. One is to use 
different intelligence algorithm e.g., Genetic Algorithm, Artificial 
Immune Algorithm and Ant Colony algorithm for positive and 
negative matrix factorization. The other is predicting user links and 
their symbols by extending social balance theory and social status 
theory, so we can calculate how important each user is in the 
relation network. In the future, we will further study user 
relationship in a social network combining with multimodal data, 
to see if it can be applied it into various domains, e.g. 
recommendation system, traffic control and logistics distribution. 
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