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Abstract. Disease diagnosis can provide crucial information for clin-
ical decisions that influence the outcome in acute serious illness, and
this is particularly in the intensive care unit (ICU). However, the cen-
tral role of diagnosis in clinical practice is challenged by evidence that
does not always benefit patients and that factors other than disease are
important in determining patient outcome. To streamline the diagnos-
tic process in daily routine and avoid misdiagnoses, in this paper, we
proposed a deep multi-source multi-task attention model (DMMAM) for
ICU disease diagnosis. DMMAM exploits multi-sources information from
various types of complications, clinical measurements, and the medical
treatments to support the diagnosis. We evaluate the proposed model
with 50 diseases of 9 classifications on an extensive collection of real-
world ICU Electronic Health Records (EHR) dataset with 151729 ICU
admissions from 46520 patients. Experiments results demonstrate the
effectiveness and the robustness of our model.

Keywords: Electronic Health Record · Disease prediction ·
Multi-source multi-task learning · Health care data mining

1 Introduction

The traditional model of clinical practice incorporates diagnosis, prognosis, and
treatment. Diagnosis is fundamental to the practice of medicine and mastery of it
is central to the process of both becoming and practicing as a doctor. Moreover,
the activity of diagnosis is central to the practice of medicine, and has, to date,
received the focused medical and computational science attention which many
have argued it warrants [3]. This is beginning to be outburst with an emergent
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computer-aided diagnosis, which seeks to explore the activity and its outcomes
as a prism through which many issues are played out [14]. It is argued that
diagnosis serves many functions for patients, clinicians, and wider society [14],
and can be understood both as a category and a process [3]. Diagnosis classifies
the sick patient as having or not having a particular disease. Historically, the
diagnosis was regarded as the primary guide to treatment and prognosis (“what
is likely to happen in the future”), and this is still considered the core component
of clinical practice [8].

Intensive care refers to the specialized treatment given to patients who are
acutely unwell and require critical medical care. Moreover, an Intensive Care
Unit (ICU) provides the critical care and life support for acutely ill and injured
patients. The ICU is one of the most critically functioning operational environ-
ments in a hospital. To healing ICU patients, the clinicians need to actions in
a remarkably short period. However, intensivists depend upon a large number
of measurements to make daily decisions in the ICU. However, the reliability of
these measures may be jeopardized by the effects of therapy [18]. Moreover, in
critical illness, what is normal is not necessarily optimal. Diagnosis as the initial
step of this medical practice is one of the most important parts of complicated
clinical decision making [1].

With Electronic Health Records (EHR) growth in biomedical and healthcare
communities, it is possible to use bedside computer-aided diagnosis to accurate
analysis of medical data, which can greatly benefit the ICU disease diagnosis
as well as patient care, and community services. However, the existing work
has focused on specialized predictive models that predict a limited set of dis-
ease. Such as Long et al. use the IT2FLS model to diagnosis heart disease [17],
Jiri PolivkaJr et al. tried to find the mystery of the brain metastatic disease
[22], Chaurasia et al. [4] use data mining techniques to detect breast cancer
and Nilashi et al. [20] use neuro-fuzzy technique for hepatitis disease diagnosis.
However, the day-to-day clinical practice involves an unscheduled and hetero-
geneous mix of scenarios and needs different prediction models in the hundreds
to thousands [7]. It is impractical to develop and deploy specialized models one
by one.

As shown in Fig. 1, this is the complication distribution of patients in the
Medical Information Mart for Intensive Care (MIMIC-III) [12]. We noticed that
the vast majority of patients in the ICU are diagnosed with more than one dis-
eases, that is to say, most of the patients have 5 to 20 complications. Moreover,
the human body as organic entities and different systems are closely connected,
and no diseases are isolated. In considering this, to establish a single model to
diagnosis the majority of the diseases, we designed a multi-source multi-task
attention [30] model for ICU diagnosis. The sources refer the different clinical
measurements and the medical treatment, and the tasks refer the diagnose of
different diseases, the detailed description will in the section of Problem Def-
inition. To the best of our knowledge, this is the first time that to utilizing the
shared feature space from different disease to boost the diagnose performance.
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Fig. 1. Complication distribution of patients in MIMIC-III.

The focus of this paper is upon diagnosis as a process, we put the diagnosis
into a temporal sequence and treated it as a step-by-step process, in particular
from the perspective of the EHR data streaming. We conduct our experiment on
real-world MIMIC-III benchmark dataset, and the result shows that our model is
highly competitive and outperforms the state-of-the-art traditional methods and
commonly used deep learning methods. Furthermore, we evaluated our model
on 9 human systems over 50 different kinds of diseases.

The main contributions of this work are summarized as follow:

– Multiple Perspectives for Disease Formulation. We formulate ICU
disease diagnose as a multi-source and multi-task learning problem, where
sources correspond to clinical measurements and medical treatment, tasks
correspond to the diagnosis of each disease. This work enables us to use a
straightforward model to handle different kinds of diseases over all categories.

– Diagnosis Step by Step. For the first time, we treat the disease diagnosis
as a gradual process over the observations along the temporal measure and
treat sequence as well as the complications.

– A Novel Integrated Model to diagnose the majority of the disease.
We designed a model DMMAM integrated with the input embedding, window
alignment, attention mechanisms, and focal loss functions.

– Comprehensive Evaluated Experiments. We conduct experiment on
MMIC-III benchmark dataset on 50 diseases over 9 categories, which cov-
ers most of the commonly diseases. The results demonstrate that our method
is effective, competitive and can achieve state-of-the-art performance.

The remainder of this paper is organized as follows. We present a review of
the recent advances in disease diagnoses briefly in Sect. 2. Section 3 gives out the
detailed problem definition and our proposed framework. Section 4 introduced
our experiment and our discussions. Section 5 concludes this study with future
work.
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2 Related Work

Diagnosis is the traditional basis for decision-making in clinical practice, infer-
ring the disease from the observations attracts more and more attention in
recent years [7,17,22,25,31]. Existing disease prediction methods can be roughly
divided into two categories: clinical based diagnosis [9,22,25] and data based
diagnosis [7,17,31]. Most existing clinical based diagnosis need profound knowl-
edge of medical and most of them are focused on the certain field, such as
specific diseases are caused by specific germs [21]. Until the last few years, most
of the techniques for computer-aided disease diagnosis were based on traditional
machine learning and statistical techniques such as logistic regression, support
vector machines (SVM) [27], random forests (RF) [19] and decision tree (DT)
[2,11,24]. Recently, deep learning techniques have achieved great success in many
domains through deep hierarchical feature construction and capturing long-range
dependencies in an effective manner [10]. Given the rise in popularity of deep
learning approaches and the increasingly vast amount of clinical electronic data,
there has also been an increase in the number of publications applying deep
learning to diseases diagnosis tasks [5–7,20] which yield better performance than
traditional methods and require less time-consuming preprocessing and feature
engineering. For instance, Zhenping et al. [5] use the Best Mimic Model for ICU
outcome prediction and got average 0.1 Area under Receiver Operating Char-
acteristic (AUROC) score than SVM, LR and DT, Zachary C et al. learned to
diagnose with long short-term memory (LSTM) recurrent neural networks and
got average 0.5981 F1 scores over 6 different diseases.

However, all these methods are designed for a specific disease based on either
the intensive use of domain-specific knowledge or taking advantage of advanced
statistical methods. Specifically, studies have been conducted on Alzheimer’s dis-
ease [31], heart disease [17], chronic kidney disease [28], and abdominal aortic
aneurysm [13]. Moreover, these models have been developed to anticipate needs
and focused on specialized predictive models that predict a limited set of diseases.
However, the day-to-day clinical practice involves an unscheduled and heteroge-
neous mix of scenarios and needs different prediction models in the hundreds to
thousands. It is impractical to develop and deploy specialized models one by one
[7]. So it is significant to develop a unified model and can apply for the majority
of diseases. This is beautiful dovetails to the multi-task learning, each disease
can be treated as a single learning task. Note that many approaches to multi-
task learning (ML) in the literature deal with a similar setting: They assume
that all tasks are associated with the single output, e.g., the multi-class MNIST
dataset is typically cast as 10 binary classification tasks. More recent approaches
deal with a more realistic, heterogeneous setting where each task corresponds
to a unique set of output [23]. We can not simply apply their approaches to
ours, because we multiple clinical observations, multiple, and multiple medical
treatments cannot be integrated into the existing frameworks.

More importantly, the human body as organic entities and different systems
are intimately connected, and no diseases are isolated, so there may be little
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difference between the complications. Therefore, based on our experiments it
is hard for traditional methods to apply to such huge dataset over 50 kinds of
diseases.

Inspired by the above problems, in this paper, we propose a general method-
ology, namely Deep Multi-source Multi-task Attention Model (DMMAM), to
predict the disease from multi-modal data jointly. Here the sources indicate the
clinical measurements and the medical treatments, the tasks represent the diag-
nosis of the diseases. In our work, the variables include not only the continuous
clinical variables for regression (time series step by step regression) but also
the categorical variable for classification (i.e., the class label for diseases clas-
sification). We treat the estimation of different diseases as different tasks, and
multi-task learning [31] method developed in the machine learning community
for joint learning. Multi-task learning can effectively increase the sample size that
we are using to train the model because the samples of some kinds of disease are
really small, which are not enough for learning (see Table 1). Specifically, at first,
we assume that related tasks share a common relevant feature subset such as the
age, temperature, heartbeat, blood pressure, et al. but with a varying amount
of influence on each task, and thus adopt a hand engineered feature selection
method to abstain a common feature subset for different tasks simultaneously.
Then, we use a window alignment to adjust the time window between different
sources and use one dense layer to reduce the dimensionality. Besides, we use two
attention layer to capture the correlations between the different input sources as
well as each time step. Finally, we use a gated recurrent unit (GRU) to fuse the
above-selected features from each modality to estimate multiple regression and
classification variables.

We will detail the problem definition in Sect. 3 and our proposed method in
Sect. 4.

3 Proposed Framework

3.1 Problem Statement

For a given ICU stay length of T hours, and a collection of diagnostic results
Rt, t ∈ T , it is assumed that we have a series of clinical observation:

O(t) =

{
Rt, if Rt /∈ ∅
0, otherwise

(1)

where O(t) is vector of bedside observations at time t. O(t) = P i
aΘQi

b, where P i
a

represent the i-th clinical measurement at time a, Qj
b represent the j-th medical

treatment at time b, and Θ is a window alignment operation between P i
a and

Qj
b, and Rt represent the diagnostic result at time t. Our objective is to generate

a sequence-level disease prediction at each sequence step. The type of prediction
depends on the specific task and can be donated as a discrete scalar vector Ri

t

for the multi-task classification. As all tasks are at least somewhat noisy, when
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training a model Taski, we expect to learn a good representation for Taski
that ideally ignore the data-dependent noise and generalize well. By sharing
representations between related tasks, we can enable our model to generalize
better on our original task.

3.2 Multi-modal Multi-task Temporal Learning Framework for
Temporal Data

Inspired by Daoqiang Zhang and Dinggang Shen’s work [31], we treat the diagno-
sis of the diseases as a sequential multi-modal multi-task (SM3T) learning prob-
lem. The multi-modal represents the clinical measurements and the medical treat-
ments. The tasks represent the diagnosis. The framework can simultaneously learn
multiple tasks from multi-model temporal data. Figure 2 illustrates the proposed
SM3T method and a comparison with the existing learning methods.
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Fig. 2. Multi-modal multi-task temporal learning framework for temporal data.

Figure 2(a) is single-modality single-task temporal learning, each subject has
only one modality of data represented as xi at each time step, and each subject
corresponds to only one task denoted as Yi, this is the most commonly used learn-
ing method; Fig. 2(b) is single-modality multi-task temporal learning the input is
similar as single-task temporal learning, but each object corresponds to multiple
tasks denoted as Y 1

i , Y 2
i , Y 3

i , ..., Y n
i , n > 1; Fig. 2(c) is multi-modality single-task

temporal learning, each subject has multiple modalities of data represented as



Multi-source Multi-task Attention Model for ICU Diagnosis 59

x1
i , x

2
i , x

3
i , ..., x

n
i , n > 1 at each time step and each subject corresponds to only

one task denoted as Yi; Fig. 2(d) is multi-modality multi-task temporal learning,
each subject has multiple modality of data represented as x1

i , x
2
i , x

3
i , ..., x

n
i , n > 1

at each time step and each subject corresponds to multiple tasks denoted as
Y 1
i , Y 2

i , Y 3
i , ..., Y n

i , n > 1.
Similar to Zhang’s et al. [31] we can formally define the SM3T learning

as below. Given N training subjects over T time span and each is having M
modalities of data, represented as:

xt
i = {xt

i(1), xt
i(2), . . . xt

i(m), . . . , xt
i(M)}, i = 1, 2, . . . , N (2)

our SM3T method jointly learns a series of models corresponding to Y different
tasks denoted as:

Yi = {yt
i(1), yt

i(2), . . . , yt
i(j), . . . , y

t
i(Y )}, j = 1, 2, . . . , N (3)

Noting that SM3T is a general learning framework, and here we implement
it through an attention framework as shown in Fig. 3. The x-axis represents the
sequential data stream at time t, the y-axis represents the actions conducted on
each t point and z-axis is the modalities of the input sources. In our experiment,
N = 2 (e.g., S1 = clinical measurements and S2 = medical treatment) are used
for jointly learning models corresponding to different tasks. We will detail the
inner action of the SM3T framework in the following sections.
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Fig. 3. The proposed multi-source multi-task attention model.

3.3 Input Embedding and Window Alignment

Give the R actions for each step for each step t, the first step in our model
is to generate an embedding that captures the dependencies across different
disease without the temporal information. In the embedding step, let N denote
the number of diseases. The diagnosis process is first designed for each disease
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without temporal information. Let P denote the ICU patients. The p−th patient
have h diagnosis results at time t, and p − th patients with h − th diseases is
associated with two feature vectors Sah

p(t) and Sbhp(t) derived from the EHR,
where Sah

p(t) donate the clinical measurements and Sbhp(t) donates the medical
treatments. The dimension of Sa and Sb are α and β, respectively. Combined
Sa and Sb, we generated a new feature vector Φh for the p − th patient:

Φp ≡ [φp
1(t), φ

p
2(t), . . . , φ

p
h(t)] (4)

φh
p(t) = λh

1Sah
p(t) � λh

2Sbhp(t) (5)

where � is Window Alignment operation, and λ1 and λ2 are trainable hyper-
parameters for each disease.

Since our framework contains multiple actions, medical treatments Sb and
clinical measurements Sa. The intentions of why we add a window alignment
operation is that according to the common medical sense, the effect of treatment
usually has some delay to the measurements. Assume Sah

p(ti) represent the clin-
ical measurements at time ti and Sah

p(tj) represent the medical treatments at
time step tj. The alignment is performed by mapping Sah

p(ti) and Sah
p(tj) into

a unique time step Sh
p (t). The alignment parameters λh

i are learned according
to the patients and disease respectively. We found that tj usually later than ti,
and this well accords with the prevailing medical sense.

3.4 Dense Layer

To balance the computational cost as well as the predictable performance, we
need to reduce the dimensions before we transfer the raw medical data to the
next process step. The typical way is to concatenate an embedding at every step
in the sequence. However, due to the high-dimensional of the clinical features,
“cursed” representation which is not suitable for learning and inference. Inspired
by the Trask’s work [29] in Natural Language Processing (NLP) and Song’s [26]
in clinical data processing, we add a dense layer to unify and flatten the input
features. To prevent overfitting, we set dropout = 0.38 here.

3.5 The Gated Recurrent Unit Layer

The gated recurrent unit layer (GRU) takes the sequence of action {xt}Tt≥1 from
the previous dense layer and then associate p − th patient with a class label
vector Y along with the time span, donates the class label for the p − th patient
with the n − th disease at time T . Y n

p (t) is set ass follows:

Y n
p (t) =

{
diseaseID, if diagnosis recorded at time t

0, otherwise.
(6)

We create a T-dimensional response vector for the p − th patient:

Y (p) = (yp,1, yp,2, . . . , yp,pt
)� (7)
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For the diagnosis of ICU patients, we adopted GRU and represent the pos-
terior probability of the outcome of patient p has y − th disease as:

Pr[Pn
y (t) = 1|φp

h(t)] = σ(ω(p)T φp
h(t)) (8)

where φ(a) is the sigmoid function σ(a) ≡ (1 + exp(−a))−1 and ω(p) is a α + β
dimensional model parameter vector for the p − th patient.

To learn the mutual information of data resulting from the customization, we
model for all disease jointly, so that we can share the same vector space across
the disease, this is very useful for those diseases with fewer samples. We represent
the trainable parameters of the GRU as a (Sa + Sb) × T W ≡ [ω1, ω2, · · · , ωt].

3.6 Multi-head Attention and Feed Forward

This attention layer is designed to capture the dependencies of the whole
sequence, as we treated the diagnosis as a step-by-step process. In the ICU
scenario, the actions (clinical measurements and medical treatments) closer to
the current position are critical in helping the diagnosis. However, the observa-
tions further are less critical. Therefore, we should consider information entropy
differently based on the positions which we make observations.

Inspired by [30], we use H-heads attention to create multiple attention graphs,
and the resulting weighted representations are concatenated and linearly pro-
jected to obtain the final representation. Moreover, we also add 1D convolutional
sub-layers with kernel size 2. Internally, we use two of these 1D convolutional
sub-layers with ReLU (rectified linear unit) activation in between. Residue con-
nections are used in these sub-layers. Unlike the previous work [1,4,7,11] making
the diagnosis only once after a specific timestamp, we give out prediction at each
timestamp. This is because the diagnosis results may change during the ICU stay
and we make it as a dynamic procedure. This is more helpful for the ICU clini-
cians because they need to know the patients’ possible disease at any time other
than at the particular time. We stack the attention module N times and using
the final representations in the final model. Moreover, this attention layer is task
wise, that is to say if this attention will only work when this attention is helpful
to the diagnosis.

3.7 Linear and Softmax Layers

The linear layer is designed to obtain the logits from the unified output of atten-
tion layer. The activation function used in this layer is ReLU. The last layer is
preparing for the output based on different tasks. We use softmax to classify the
different diseases, and the loss function is:

Loss d =
1
N

N∑
n=1

−(yk • log(yk) + (1 − yk)). (9)

where N donate the number of diseases. Due to the distribution of the training
set we also introduce Focal Loss as our loss function [16].
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Table 1. Description of the prediction tasks based on ICD 9 code.

Category ICD 9 Title SampleSize Age

1: Infectious and Parasitic 008.45 Int inf clstrdium dfcile 2672 69.07± 24.31

038.9 Unspecified septicemia 5787 69.11± 32.13

2: Neoplasms 197.0 Secondary malig neo lung 866 62.23± 13.31

197.7 Second malig neo liver 926 64.63± 17.47

198.5 Secondary malig neo bone 984 63.59± 12.77

3: Endocrine, Nutritional, Metabolic

and Immunity

250.00 DMII wo cmp nt st uncntr 10585 71.40± 28.41

250.40 DMII renl nt st uncntrld 1574 69.26± 20.04

250.60 DMII neuro nt st uncntrl 1793 70.02± 26.25

263.9 Protein-cal malnutr NOS 2258 65.95± 26.35

4: Blood and Blood-forming Organs 280.0 Chr blood loss anemia 1346 68.34± 25.88

280.9 Iron defic anemia NOS 1992 67.38± 39.21

285.1 Ac posthemorrhag anemia 6998 69.10± 36.81

285.21 Anemia in chr kidney dis 2616 66.70± 28.35

285.29 Anemia-other chronic dis 2225 67.45± 32.21

285.9 Anemia NOS 8253 67.90± 34.13

5: Circulatory System 397.0 Tricuspid valve disease 1286 77.26± 40.76

401.9 Hypertension NOS 23153 71.27± 32.66

403.90 Hy kid NOS w cr kid I-IV 4712 81.32± 45.61

403.91 Hyp kid NOS w cr kid V 3756 65.27± 19.49

410.71 Subendo infarct initial 4474 74.17± 30.51

411.1 Intermed coronary synd 2200 69.42± 22.56

412 Iron defic anemia NOS 4479 74.93± 36.99

413.9 Angina pectoris NEC/NOS 1468 70.64± 27.84

414.00 Crnry athrscl natve vssl 2415 78.53± 37.30

414.01 Cor ath unsp vsl ntv/gft 14585 73.24± 32.09

414.8 Chr ischemic hrt dis NEC 1526 74.54± 28.52

431 Intracerebral hemorrhage 1561 69.71± 28.83

433.10 Ocl crtd art wo infrct 1109 75.77± 30.39

434.91 Crbl art ocl NOS w infrc 907 69.41± 28.22

6: Respiratory System 482.41 Meth sus pneum d/t Staph 1297 64.56± 22.81

486 Pneumonia organism NOS 7779 68.51± 32.89

491.21 Obs chr bronc w(ac) exac 1851 72.91± 24.79

493.20 Asthma NOS 1215 69.22± 26.13

493.90 Chronic obst asthma NOS 2781 59.18± 30.16

7: Digestive System 571.2 Cirrhosis of liver NOS 1529 55.93± 12.54

571.5 Alcohol cirrhosis liver 1820 60.29± 16.73

8: Genitourinary System 584.5 Ac kidny fail tubr necr 3567 65.98± 24.11

584.9 Acute kidney failure NOS 3564 71.45± 36.21

585.6 Chronic kidney dis NOS 2720 62.39± 20.38

585.9 End stage renal disease 4942 79.01± 41.90

600.00 BPH w/o urinary obs/LUTS 1850 79.81± 35.58

9: Conditions originating in the

perinatal period

765.18 Preterm NEC 2000-2499g 621 0.03± 0.03

765.19 33-34 comp wks gestation 557 0.02± 0.02

765.27 35-36 comp wks gestation 545 0.04± 0.03

765.28 Preterm NEC 2500+g 642 0.02± 0.02

769 Respiratory distress syn 511 0.10± 0.09

770.6 Primary apnea of newborn 535 0.02± 0.03

770.81 NB transitory tachypnea 331 0.10± 0.08

774.2 Neonat jaund preterm del 1021 0.08± 0.08

774.6 Fetal/neonatal jaund NOS 514 0.02± 0.04
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4 Experiment

4.1 Data Description

We use a real-world dataset from MIMIC III1 to evaluate our proposed app-
roach. MIMIC-III is a large, publicly-available database comprising de-identified
health-related data associated with approximately sixty thousand admissions of
patients who stayed in critical care units of the Beth Israel Deaconess Medical
Center between 2001 and 2012. The open nature of the data allows clinical stud-
ies to be reproduced and improved in ways that would not otherwise be possible
[12]. In our experiment, we treat each ICU stay as a single case, because different
ICU stay from the same patient may have diagnosed with a different disease.
Moreover, this operation can help us to obtain more samples to train. As shown
in Table 1, this is the first time that disease diagnosis conduct on such huge
amount categories. We category the dataset based on the International Classi-
fication of Diseases (ICD) code, ICD-9, and we select 151729 ICU admissions
over 50 commonly diagnosed disease. As shown in Fig. 1, most patients have
multiple complications, and we collected all the complications in the whole ICU
process temporally. Unlike the previous work, we did not filter any patients, this
may results low performance, compared with related work. For the features, we
included 529 clinical measurements features and 330 medical treatment features.
Due to the abundant and mussy training samples, the performance between dif-
ferent disease is hugely different.

4.2 Experiment Settings

Our experiment includes over 40000 patients among 9 categories of 50 kinds of
disease, the ICD9 code range from 001 to 779. A measure of the diagnosed dis-
ease, we set the outcome is “true” if the prediction result is right between the
diagnose time span we observed the disease otherwise “false”. In the training
process, we will give out predict every time step only if there are observations
during this time step, but in the test process we can give out diagnosis at every
time step, and the time span can be customized. The learning rate in this exper-
iment is 0.001, and the epochs size is 30. In our experiment, we set the batch size
to 32, with ADAM optimizer and set dropout = 0.35. According to our exper-
iment, we can get most of the best performance when then attention stack for
4 times. In order to conduct all the experiment in the same data, we manually
divide the training set, validation set, and test set, we listed it in the Table 2.

4.3 Compared Methods

We compared our proposed method with 6 commonly used methods, i.e., Logis-
tic Regression (LR) with L2 regularization, Random Forest (RF), Support Vec-
tor Machine (SVM), Decision Tree (DT), GRU, and the-state-of-the-art LSTM

1 Data available at https://mimic.physionet.org/.

https://mimic.physionet.org/
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Table 2. Experiment settings for training, validating and test.

Task Train Validation Test Task Train Validation Test

008.45 1870 534 268 414.8 1068 305 153

038.9 4050 1157 580 431 1092 312 157

197.0 606 173 87 433.10 776 221 112

197.7 648 185 93 434.91 634 181 92

198.5 688 196 100 482.41 907 259 131

250.00 7409 2117 1059 486 5445 1555 779

250.40 1101 314 159 491.21 1295 370 186

250.60 1255 358 180 493.20 850 243 122

263.9 1580 451 227 493.90 1946 556 279

280.0 942 269 135 571.2 1070 305 154

280.9 1394 398 200 571.5 1274 364 182

285.1 4898 1399 701 584.5 2496 713 358

285.21 1831 523 262 584.9 2494 712 358

285.29 1557 445 223 585.6 1904 544 272

285.9 5777 1650 826 585.9 3459 988 495

397.0 900 257 129 600.00 1295 370 185

401.9 16207 4630 2316 765.18 434 124 63

403.90 3298 942 472 765.19 389 111 57

403.91 2629 751 376 765.27 381 109 55

410.71 3131 894 449 765.28 449 128 65

411.1 1540 440 220 769 357 102 52

412 3135 895 449 770.6 374 107 54

413.9 1027 293 148 770.81 231 66 34

414.00 1690 483 242 774.2 714 204 103

414.01 10209 2917 1459 774.6 359 102 53

based method [15]. Due to the page limitation we only listed the two of the top
two best methods in our paper. The first one is Logistic Regression (LR) with
L2 regularization, and the second is the-state-of-the-art LSTM based method
we listed LSTM+ in Table 3. As mentioned above, to ensure every evaluation
method uses the same data, we fixed the dataset. As shown in Table 2 the vali-
dation and test date we use is approximately 25% of the whole dataset.
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Table 3. Performance evaluation on each diagnose task.

Cat. Task LR LSTM+ DMMAM(our method)

F1 Acc Recall F1 Acc Recall F1 Acc Recall

1 008.45 0.5822 0.6639 0.4784 0.8123 0.6840 1 0.8641 0.7240 1

038.9 0.5822 0.6639 0.9345 0.7442 0.5259 1 0.8641 0.8171 0.9216

2 197.0 0.5593 0.5679 0.2414 0.7919 0.5392 0.7122 0.8515 0.8281 0.8846

197.7 0.5895 0.5964 0.3333 0.7570 0.6357 0.8663 0.8162 0.7172 0.8945

198.5 0.5366 0.5286 0.4500 0.6012 0.5214 0.5667 0.6842 0.7118 0.6457

3 250.00 0.5465 0.6546 0.9754 0.5443 0.6533 0.0531 0.6545 0.7101 0.6153

250.40 0.8549 0.8941 0.0189 0.9485 0.9021 1.0000 0.9485 0.9021 1.0000

250.60 0.8382 0.8892 0.0056 0.9413 0.8892 0.9000 0.9613 0.9292 1.0000

263.9 0.8135 0.8602 0.0752 0.9252 0.8608 1.0000 0.9252 0.8608 1.0000

4 280.0 0.9139 0.9412 0.67454 0.6364 0.4116 0.5483 0.9704 0.9425 1.0000

280.9 0.8740 0.9130 0.5050 0.9557 0.9152 0.9210 0.9755 0.9347 1.0000

285.1 0.6405 0.6398 0.4037 0.8204 0.6995 0.9897 0.8482 0.7412 0.9988

285.21 0.8531 0.8717 0.1832 0.9409 0.8883 0.8328 0.9709 0.9283 1.0000

285.29 0.8589 0.9024 0.4327 0.9503 0.9054 0.9200 0.9503 0.9054 1.0000

285.9 0.5216 0.5196 0.7167 0.5852 0.4996 0.5447 0.7492 0.5533 0.8803

5 397.0 0.8429 0.8587 0.1163 0.9453 0.8962 0.9991 0.9457 0.8970 1.0000

401.9 0.5830 0.6232 0.1354 0.7277 0.6137 0.2380 0.9213 0.9137 0.7612

403.90 0.6787 0.6621 0.6271 0.8065 0.6838 0.9027 0.8255 0.7079 0.9466

403.91 0.7841 0.7892 0.4495 0.8777 0.7824 0.9956 0.8795 0.7852 0.9993

410.71 0.7007 0.7062 0.3764 0.8293 0.7159 0.9314 0.8333 0.7776 0.9499

411.1 0.7835 0.7670 0.5818 0.8559 0.7534 0.8887 0.8705 0.7749 0.9177

412 0.6930 0.7131 0.2806 0.8122 0.6924 0.8951 0.8382 0.7228 0.9668

413.9 0.8326 0.8611 0.1014 0.9345 0.8771 0.9937 0.9376 0.8827 1.0000

414.00 0.6858 0.6536 0.5331 0.7307 0.6081 0.6588 0.7419 0.6129 0.6894

414.01 0.5830 0.6232 0.2503 0.7606 0.6137 1.0000 0.8508 0.7091 1.0000

414.8 0.8215 0.8468 0.1046 0.9327 0.8739 0.9955 0.9350 0.8779 1.0000

431 0.8619 0.8540 0.5669 0.9317 0.8723 0.9954 0.9332 0.8747 1.0000

433.10 0.8588 0.8899 0.0089 0.9532 0.9106 1.0000 0.9532 0.9106 1.0000

434.91 0.8873 0.9058 0.0652 0.9123 0.9074 0.8975 0.9619 0.9266 1.0000

6 482.41 0.8705 0.9071 0.0153 0.9542 0.5091 0.8320 0.9762 0.7210 0.9045

486 0.4328 0.5337 0.9345 0.6016 0.5210 0.0292 0.9542 0.9125 1.0000

491.21 0.8180 0.8651 0.0269 0.9338 0.8758 1.0000 0.9338 0.8758 1.0000

493.20 0.8782 0.9158 0.8861 0.9575 0.9185 0.8921 0.9775 0.9432 1.0000

493.90 0.7508 0.7989 0.1039 0.8972 0.8136 0.8020 0.9454 0.8732 1.0000

7 571.2 0.5626 0.5685 0.4416 0.6866 0.5625 0.8846 0.6951 0.5744 0.8956

571.5 0.5626 0.5685 0.6758 0.4111 0.5625 0.3377 0.7204 0.6744 0.7455

8 584.5 0.7662 0.7505 0.2817 0.9257 0.8618 1.0000 0.9259 0.8620 1.0000

584.9 0.4235 0.5251 0.1003 0.5016 0.4945 0.0545 0.7739 0.7173 1.0000

585.6 0.8768 0.8966 0.2169 0.9441 0.8941 1.0000 0.9642 0.8943 1.0000

585.9 0.4858 0.4473 0.7859 0.8933 0.8072 0.7892 0.9241 0.8124 0.8600

600.00 0.8984 0.9184 0.0919 0.9637 0.9299 1.0000 0.9627 0.9281 1.0000

9 765.18 0.8260 0.8555 0.0794 0.9361 0.8799 0.9979 0.9372 0.8818 1.0000

765.19 0.8272 0.8593 0.5420 0.8446 0.8249 0.8213 0.9357 0.8799 0.9769

765.27 0.8499 0.8518 0.2545 0.9446 0.8949 0.9979 0.9456 0.8968 1.0000

765.28 0.8225 0.8255 0.2462 0.9340 0.8762 0.9979 0.9359 0.8799 1.0000

769 0.8401 0.8349 0.2308 0.9487 0.9024 1.0000 0.9487 0.9024 1.0000

770.6 0.8568 0.8518 0.3519 0.9476 0.9006 0.9192 0.9486 0.9238 1.0000

770.81 0.9044 0.9343 0.9101 0.9680 0.9381 1.0000 0.9691 0.9392 1.0000

774.2 0.6710 0.6379 0.4608 0.6174 0.4953 0.5035 0.7904 0.6717 0.7657

774.6 0.8679 0.8593 0.4423 0.9497 0.9043 0.9102 0.9765 0.9343 1.0000
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4.4 Evaluation Metric

To provide a comparison among the mentioned techniques, three evaluation tech-
niques were used in this research: F1-Measure, Accuracy, and Recall. Those eval-
uation techniques are defined as:

Accuracy =
TF + TN

TP + FP + TN + FN
Recall =

TP

TP + FN
(10)

F1-Measure =
2 × Precision × Recall

Precision + Recall
(11)

where TP and FP are the number of true positive and false negative,
respectively.

4.5 Experiment Results and Discussions

Table 3 shows the prediction results. We can see that our model is significantly
outperformed than all the baseline methods. Because we did not filter any ICU
admissions and included all categories of the disease, so some evaluation metrics
of our experiment are lower than those results appeared in Chen et al.’s work
[15] (marked as LSTM+ in Table 3), but under the same experiment settings,
our can always achieved the best performance. We can see that the number of
the sample can greatly improve the diagnosis performance, the more samples,
the better performance can achieve.

We discovered that the difference among categories are more evident than the
diseases in the same category, and can pass average 3.2% in accuracy. The disease
in category 3, Endocries, Nutritional, Metabolic and Immunity is the hardest
disease to diagnosis in our model, and the disease of Conditions originating
in the perinatal period in category 9 are the easiest ones to diagnosis. This is
because there are greater diversities between category 9 and others, and there
are smaller diversities between category 3 and others. Besides, the disease in
the same categories have different diagnosis performance indicate that there is a
higher relevance in the same system. We also conducted the ablation studies on
the process of diagnosis, and the results show that the multi-source and multi-
task can help us improved the performance among all the tasks over 3.6 percent
in F1 scores. That is to say, by share the context feature space in the hidden
layers the DMMAM can significantly improve the performance.

5 Conclusion and Future Work

In this study, we presented a new model named DMMAM for the disease diag-
nosis in the circumstances of the ICU. We modeled the ICU disease diagnosis
as a multi-source multi-task classification problem. Moreover, we treat the diag-
nosis as a gradually process along the clinical measurements and the clinical
treatments. The significances of our proposed model can be identified as:
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1. We considered the diversity of complications. This both accords with
the medical situation that no disease is isolated and different diseases have
different diagnostic criteria and different treatment methods, the proposed
multi-source multi-task model can perfectly suitable for this situations;

2. We considered the diagnosis sequential relationship. By introducing
the attention layer we simulated the clinicians’ diagnosis process and captured
the interaction information among the sequence.

3. Solved the imbalance problem. The sample variance among the training
data is hugely among different diseases. For example, the unspecified essential
hypertension has 23153 samples. However, the secondary malignant neoplasm
of the lung has only 866 samples. So if we are learning diagnosis without any
precautionary measures, the diagnosis result would definitely to the major-
ity ones. By using focal loss function, we alleviated problem caused by the
unbalance of the dataset in the training process.

We conducted our experiment on 50 diseases over 167884 samples the results
show the robustness and high accuracy. Moreover, this is the first time that
diagnosis been conducted on such huge dataset. Nevertheless, how to use these
diagnoses in further clinical actions remains a challenge in scientific research,
and future work can be focused on this problem.
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