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a b s t r a c t 

The primary objective of recommender systems is to help users select their desired items, where a key 

challenge is providing high-quality recommendations to users in a “cold-start” situation. Recent advances 

in tackling this problem combine social relations and temporal information and integrate them into a 

unified framework. However, these methods suffer from a limitation that there not always exist links for 

the newcomers, thus these users are filtered in related studies. To break the boundary, in this paper, we 

propose a Joint Personalized Markov Chains (JPMC) model to address the cold-start issues for implicit 

feedback recommendation system. In our study, we first utilize user embedding to mine Network Neigh- 

bors, so that newcomers without relations can be represented by similar users, then we designed a two- 

level model based on Markov chains at both user level and user group level respectively to model user 

preferences dynamically. Experimental results on three real-world datasets have shown that our model 

can significantly outperform the state-of-the-art models. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Recommender systems (RS) play a vital role in daily lives as

they assist prospective buyers in making proper decisions. RS aim

at providing users with effective recommendations based on their

intuitions and preferences. In literature, there are two commonly

used techniques for recommendation: Collaborative Filtering (CF)

based methods [1–3] and Content-based (CB) methods [4,5] . How-

ever, these methods suffer the most known problem, the “user

cold-start (UCS)” problem. The UCS is related to recommenda-

tions for novel users lacking explicit information (e.g., ratings). This

problem may lead to the loss of new users due to the low accuracy

of recommendations at the early stage [6] . 

With the achievement in social media, many social-based meth-

ods have been proposed to deal with the UCS problem. These

methods predict new users’ preferences based on their friends by

introducing social relations, and they usually improve the perfor-

mances of traditional recommendation techniques such as matrix

factorization (MF) [7–10] and Bayesian personalized ranking (BPR)
∗ Corresponding authors at: Key Laboratory of Symbol Computation and Knowl- 

edge Engineering of Ministry of Education, Changchun 130012, China. 
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11,12] . However, these methods have two drawbacks: (1) Social

elations are usually sparse in most real-life systems, leading to

xplicit social links are not always available, especially for cold-

tart users. For a more intuitive understanding, we first investigate

he distribution of social relations for both full users and cold-

tart users (users with fewer than 5 feedbacks). As we can see

rom Fig. 1 , most of the full users have less than 5 explicit social

inks in Epinions and Last.fm network. Meanwhile, cold-start users

ave fewer social links than full users, even in the network of Ciao,

ver half of cold-start users have less than 10 explicit social links.

2) Not all users share preferences with his/her friends. For exam-

le, an active user always connects with many users so that some

riends do not have common interests with he/she. Thus, it is not

ppropriate to use social relations directly for the recommenda-

ion. Taking these into consideration and inspired by the success

f network embedding in related works [13–16] , we employ net-

ork embedding in our model. By extending existing network em-

edding methods, we select a group of users for each user as their

etwork Neighbors to replace friends. 

Another important factor we should not neglect is that both

f the user preference and social influence are drifting over time.

o, one practical way to deal with UCS problem is integrating

emporal information into the recommendation. By utilizing

https://doi.org/10.1016/j.neucom.2019.12.046
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.12.046&domain=pdf
mailto:shizk14@mails.jlu.edu.cn
mailto:zuowl@jlu.edu.cn
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Fig. 1. The illustration of social connections number. The horizontal axis represents the range of social connections, and the vertical axis represents the percentage of the 

user. 

Fig. 2. The schematic illustration of our model. On the left, the solid arrows indicate the connection between friends, and the dotted arrows indicate the connection we 

added. In the middle, there are users embedding representations pre-trained. On the right, there are consumed sequences of users and Network Neighbors and items in 

different locations mean they are consumed at different time. 
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emporal information to enhance UCS in the recommendation, a

ot of effort s have been made by previous researchers [17–19] .

hese methods are based on Markov chains to model transitions

robabilities between two items, which can capture dynamic user

reference, but they lack other side information such as social

nformation, and as such, they help little for addressing UCS

roblem. Furthermore, methods combining temporal information

nd social information are proposed to make recommendation

20,21] , these methods have verified that combining temporal

nformation and social information can help to deal with UCS

roblem effectively, but they also cannot solve the problem that

ocial relations are sparse in real systems. 

Based on the considerations above, we propose a novel joint

odel based on Markov Chains. Fig. 2 shows the main idea of our

odel. We first create links between users with high relevance in

ddition to explicit social links. Then we utilize Node2vec model to

re-train the representations of the users. According to the repre-

entations, we select Network Neighbors for each user. Finally, we

odel the user’s both static preference and dynamic preference at

he user level and group level. Our contributions are summarized

s follows: 

1. To address the recommendations for cold-start users lacking ex-

plicit social relations, we apply network embedding technolo-

gies to select Network Neighbors instead of using social re-

lations directly. Particularly, we use both explicit and implicit

links to train the embeddings of users. 

2. To model user’s both static and dynamic preferences accord-

ing to Network Neighbors, we design a joint model to capture
these preferences, we fully considered the temporal informa-

tion and integrate it with user preference into a single frame-

work at both user and group level. 

3. We evaluate the proposed method on three real-world datasets,

and empirical results show that the proposed model improves

recommendation performance over all the baselines signifi-

cantly. Our model performs better in user cold-start issues

compared to state-of-the-art methods, especially for users who

have less social links. 

. Related work 

.1. User cold-start 

The user cold-start problem refers to providing recommenda-

ions for users who have no history of consumption, it is perva-

ive in various recommendation applications, thus addressing user

old-start issues is critically significant for improving the accuracy

f recommendation. At the early stages, there are several studies

roposed to mitigate the UCS problem by extending traditional col-

aborative filtering methods [22–25] . Zhou et al. [22] proposed a

ovel cold-start recommendation method which solves the prob-

em of initial interview construction within the context of learn-

ng user and item profiles. Rashid et al. [23] studied six techniques

hat collaborative filtering can use to learn about new users. Later,

hey extended it and studied the feasibility of many item selection

easures for the new user problem [24] . Kim et al. [25] proposed a
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Table 1 

Notations. 

Symbol Description 

U, I User/item set 

u, i User u ∈ U, item i ∈ I
S u Sequence of user 

I u + Positive item set of user u 

v u 
U, I , v i 

I, U User/item latent feature vectors 

v i 
I, L , v i 

L, I Item latent feature vectors 

ˆ x u,i,l , ̂  y u,i,l Estimated score user u gives item i given last item l 

W Matrix of user-item interaction 

D T Subset of ( u, i, l ) at user level 

D G subset of ( u, i, l ) at group level 

� Parameter set 

λ Regularization parameter 

α Balance parameter 

K Dimension of latent feature space 

N g The number of Network Neighbors 
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collaborative filtering method to provide an enhanced recommen-

dation quality derived from user-created tags. 

The advent of online social network stimulates the working on

addressing user cold-start issues [9,10,12,26–28] . Jamali and Ester

[9] introduced a novel probabilistic matrix factorization model So-

cialMF based on the assumption that users’ latent feature vectors

are dependent on their social relations. Chaney et al. [10] pre-

sented social Poisson factorization, a Bayesian model that incorpo-

rates users’ latent preferences for items with the latent influences

of her friends. Wang et al. [12] proposed model to approximate

tie strength and the popular Bayesian Personalized Ranking (BPR)

model to incorporate the distinction between strong and weak ties.

Pan and Chen [26] presented a method called GBPR that aggre-

gates groups of users’ preferences on items to reduce modeling un-

certainty. Sedhain et al. [27] proposed an effective learning-based

liner approach with social information for the user cold-start prob-

lems. In particular, Zhao et al. [11] proposed a Social Bayesian Per-

sonalized Ranking (SBPR) model, they used social connections to

better estimate users’ rankings of products, which significantly in-

creased the accuracy in a cold-start scenario. 

2.2. Temporal recommendation 

In the temporal recommendation domain, many methods based

on Markov Chain are widely used to tackle the next-item predic-

tion problem [18,19,21,29–31] . Markov Chain considers temporal

data as a stochastic process over discrete random variables, it is

a popular tool in the recommender system community. Based on

it, Rendle et al. [17] proposed Factorizing Personalized Markov

Chains (FPMC) that combines MF and (factorized) Markov chains

to capture personalized and sequential patterns. He and McAuley

[18] proposed a model named Factorized Sequential Prediction

with Item Similarity Model (Fossil). They viewed users as a combi-

nation of the factors of the items they have interacted with, which

in turn allows Fossil to provide sequential recommendations for

cold-start users. They also proposed a Socially-Aware Personalized

Markov Chains (SPMC) to deal with UCS problem [21] , which is

a combination of personalization, sequential dynamic, and social

information. Song et al. [29] proposed a unified model called

States Transition Pair-Wise Ranking Model. They combine LDA

with first-order Markov chains to simultaneously model the users’

long and short-term favorites. Chen et al. [31] put forward a

framework of personalized interest-forgetting Markov model to

better simulate the decisions of intelligent agents for personalized

recommendations. 

In conclusion, there are two main differences between our work

and previous work: (1) We use Network Neighbors instead of

friends to make up for the limitations of social relations. (2) We

also model dynamic user preference at the group level in addition

to the single user level. 

3. Proposed model 

In this section, we first present some definitions of our model.

Secondly, we will pre-train the user embedding to gain Network

Neighbors. Thirdly, we will introduce two structures we design ac-

cording to Network Neighbors. Finally, we will show our proposed

model in this paper. 

3.1. Problem formulation 

In this paper, we focus on user cold-start task in implicit feed-

back recommendation. In addition to the implicit feedback infor-

mation, both timestamps and social relations are also available.

Let U and I denotes user set and item set respectively. For each

u ∈ U , we use I u + to denote the items the user has performed.
ccording to the timestamp, each u ∈ U is observed with a feed-

ack sequence S u = { x 1 , x 2 , x 3 , . . . , x t } , ∀ x t ∈ I u + , where x t is the

onsumption item of user u at time t . Our objective is to predict

he next feedback x t+1 of each user in the consumption sequence

nd improve user cold-start issues accordingly. To better describe

ur methods, we have the following definitions, and the notation

sed throughout this paper is summarized in Table 1 . 

efinition 1. Network Neighbors . Given a user u , let G u suggests the

etwork Neighbors of the user u . We define G u the set of users

ith whom the user u has similar preferences. 

efinition 2. Group . Given a user u , the group consists u and Net-

ork Neighbors G u , we define a group as u ∪ G u . 

efinition 3. Group items . Given a user u and Network Neighbors

 u , the group items refer to the items consumed by G u and user u .

efinition 4. User sequence . Given a user u , we define S u =
 x 1 , x 2 , x 3 , . . . , x t } as user sequence. 

.2. Selecting Network Neighbors from social network 

As mentioned before, it is not realistic to integrate social in-

ormation into recommendation directly. Therefore, instead of ex-

licit social relations, we consider utilizing network embedding

ethods to select a group of users called Network Neighbors ( G u )
o represent the user preference at group level. Among the net-

ork embedding methods, Node2vec is a state-of-the-art method

hich preserves higher-order proximity between nodes [16] . It has

 more flexible sampling strategy so that it is essential in network

mbedding domain. Therefore, we adopt node2vec to learn high-

evel network representations. Formally, the proposed function is

erived as follows: 

ax 
f 

∑ 

n ∈ V 
log P r((N S (u ) | f (u )) (1)

here f is the mapping function from nodes to feature represen-

ations. For every source node n ∈ V , they define N S ( u ) ⊂ V as a

etwork neighborhood of node generated through a neighborhood

ampling strategy S . 

When training Node2vec model, each user is viewed as a node.

onsidering the sparsity of social relations, we use two types of

inks in term of edges to enhance the process of training: (1) The

xplicit social links in the social network. (2) Added links accord-

ng to the PMI (Pointwise Mutual Information) [32] between two

sers. PMI is widely used in Information Research domain to mea-

ure the co-occurrence probability between two entries, it is de-

ned as Eq. (2) . We argue that users with higher PMI value are

loser in their preference. Thus, for each user, we calculate the PMI

alues with other users and create links between users with top 10
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Fig. 3. The simplified diagram shows the process of constructing the SNA matrix according to the feedback of Network Neighbors. The left part is the original user-item 

matrix, while the right part is SNA matrix. Plus (+) indicates that a user prefers the item, and question mark (?) indicates unknown feedback. 
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MI values. We added these links to explicit social links to train

he user embedding together. 

 MI(u, v ) = 

#(u 1 , u 2 ) · D 

#( u 1 ) · #(u 2 ) 
(2)

here #(u 1 , u 2 ) denotes the number of feedback both user

 1 and user u 2 have performed, D = 

∑ 

(u 1 ,u 2 ) 
#(u 1 , u 2 ) , #(u 1 ) =

 

u 2 
#(u 1 , u 2 ) denotes the number of feedback user u 1 have per-

ormed, #(u 2 ) = 

∑ 

u 1 
#(u 1 , u 2 ) denotes the number of feedback

ser u 2 have performed. After pre-training the node2vec model,

e calculate the cosine similarity between users according to their

mbedding representations as follows: 

osine (p, q ) = 

p T q 

‖ 

p ‖ ‖ 

q ‖ 

(3)

here p and q are vector representations of two users. Ultimately,

e select top- N users as for each user as his/her G u . Note that N

alue will be evaluated in later experiments. 

.3. Static Network Neighbors Augmented matrix 

To integrate network embedding information into the recom-

endation, we first construct the static Network Neighbors Aug-

ented matrix (SNA matrix). We assume that a user tends to show

reference to the items that G u like, thus we utilize feedback of G u 
o fill the missing data in the original user-item matrix. Fig. 3 illus-

rates how we construct the SNA matrix. As we deal with implicit

eedback where each entry is a binary value 1 or 0, we fill the

issing entry in the original matrix with value 1 if the interac-

ion is performed by G u . Through this method, we transformed the

riginal sparse user-item matrix into an SNA matrix which is more

enser. Formally, the SNA matrix W ∈ R 

M×N is designed as Eq. (4) ,

t can be easily achieved by matrix multiplication. 

 ui = 

{
1 , if interaction (u, i ) is observed directly or indirectly. 
0 , otherwise 

(4) 
The NA matrix provides a static method to integrate user em-

edding information into the recommendation, which brings addi-

ional information to improve the UCS problem. It is used to cap-

ure static preference of the user along with the original user-item

atrix. 

.4. Dynamic neighbors sequence 

To better explore user preference over time, we further con-

truct a dynamic neighbors sequence (DN sequence) to model

sers’ dynamic preferences. We argue that users in a group may

ave the same preference at the same time, thus we can merge

ser sequences in a group by temporal information. Fig. 4 deter-

ines how to construct the DN sequence. To get the DN sequence,

e first collect the feedback of all the users in a group (user and

 u ), then we reorder these feedback by time. Noted that we only

eep the first occurrence for the same feedback. 

As can be seen, the DN sequence can be viewed as a dynamic

xpression of NA matrix, which provides a dynamic method to in-

egrate network embedding information into our model. Different

rom previous studies, DN sequence considers the time consistency

f consume behaviors of all users in a group, so that a group can

e viewed as a special user. By constructing the DN sequence, we

an build successive relations for all the group items according to

emporal information, and further model dynamic user preference

t group level. 

.5. Joint Personalized Markov Chains Model (JPMC) 

In this part, we present our joint model based on SNA matrix

nd DN sequence. Since FPMC incorporates matrix factorizing with

arkov chains to learn static and dynamic latent factors respec-

ively, we build our model under this framework. We will have a

rief introduction of FPMC at first, then we will present our pro-

osed joint model. 
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Fig. 4. The procedure for constructing the DN sequence. On the left side, there are three users in a group, where the number indicates the order in user’s feedback sequence. 

On the right side, there is the DN sequence we constructed. 

Fig. 5. The overall architecture of our model. 
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3.5.1. First-order FPMC 

In FPMC, given a user and item, we only consider the last item,

and the transitions probability to the item is proportional to: 

p u ( j| i ) ∝ 〈 v u U,I , v i I,U 〉 + 〈 v i I,L , v i L,I 〉 (5)

Where the first inner product denotes user u ’s static preference for

item i , while the second models the similarity between item j and

the last item l . And the estimated score ˆ x u,i,l is equal to the proba-

bility. We choose FPMC as a basic model due to its effectiveness in

modeling complex temporal data. 

3.5.2. Joint FMPC 

We now discuss how to build our joint model. So far, we have

developed two components of our model: SNA matrix and DN se-

quence. To integrate them, we propose a co-factorizing method to

model the complex interplay between group influence and user

preference over time. We assume that: (1) A user tends to show

preferences for the feedback which G u have performed. (2) A user’s

next feedback prediction is affected by the latest feedback from

both user sequence and DN sequence. Fig. 5 shows the overall of

our model. We aim to capture the user’s static and dynamic pref-

erence at both user level and group level. At user level, we use

original user-item matrix and user sequence to model user pref-

erence, which is the same as classical FPMC methods. At group

level, we model user preference based on the SNA matrix and DN

sequence. This part brings network embedding information into

Markov chains structure, which plays an important role in deal-

ing with UCS problem. Moreover, the two levels can complement

each other to learn static user and item factors better, due to we

can learn these latent factors according to two kinds of interactions

jointly. Also our model is capable of capturing the relationships be-

tween more adjacent items performed by users in a group. 

arg max 
θ

= 

∑ 

(u,i, j,l) ∈ D T 
ln p 

(
i > u,l j| �)

+ α
∑ 

(u,i, j,l) ∈ D G 
ln p 

(
i > u,l j| �)

+ ln p(�) 
= 

∑ 

(u,i, j,l) ∈ D T 
ln σ

(
ˆ x u,i,l − ˆ x u, j,l 

)

+ α
∑ 

(u,i, j,l) ∈ D G 
ln σ

(
ˆ y u,i,l − ˆ y u, j,l 

)
− λ‖ 

�‖ 

2 
F (6)

here D T and D G are the training corpuses, for each ( u, i, j, l ) in

 T , u ∈ U , i ∈ I u + , i � = j, I u + is the items user have positive feed-

ack in original user-item interaction matrix, and l is the last item

n user u ’s sequence. For each ( u, i, j, l ) in D G , u ∈ U , i ∈ I G + , i � = j,

 G 
+ is the items user show positive feedback in SNA matrix, it is

onsisted of the items both user and G u have consumed, and l is

he last item in user’s DN sequence. We use L 2 regularization to

revent over-fitting, α is a balance parameter, and its value will be

valuated in Section 4.6 . 

Our model jointly learns user and item factors in two levels.

rohn-Grimberghe et al. [33] proved that Factorizing the relations

ointly is at least as good as the sequential approach. Moreover, Cao

t al. [34] proposed CoFactor to jointly decompose the user-item

nteraction matrix and the item-item co-occurrence matrix. He and

o-workers [34] also provided a joint model for song recommen-

ation. Our model extends them to capture not only static pref-

rences but also dynamic preferences. In addition, since we deal

ith implicit feedback, it makes sense for us to learn a personal-

zed ranking for static preference as follows, 

ˆ 
 ui > 

ˆ x u j , ̂  y uk > 

ˆ y u j (7)

here ˆ x is u ’s estimated score for item by factorizing the original

ser-item matrix, ˆ y is u ’s estimated score for item by factorizing

he SNA matrix, i � = j, k � = j . 

In sum, we integrate user embedding information and temporal

nformation to improve the accuracy of the recommendation. It is

orth to notice that our model can tackle both sparsity and user

old-start issues, due to the SNA matrix and DN sequence enrich

he feedback. An additional benefit of our model is that it is more

ime-sensitive because we consider the temporal relationships be-

ween items from both user sequence and DN sequence. And by
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Table 2 

The learning algorithm of our model. 

Algorithm 1. The optimization for our model 

1.random initialize θ

2.Repeat 

3. Repeat 

4. Draw ( u, i, j, l ) from D T : 

5. θ ← � + β
((

1 − σ
(

ˆ x u,i,l − ˆ x u, j,l 

))
∂ 

∂�

(
ˆ x u,i,l − ˆ x u, j,l 

)
− 2 λ�

)
6. Until convergence 

7. Repeat 

8. Draw ( u, i, j, l ) from D G : 

9. θ ← � + β
(
α
(
1 − σ

(
ˆ y u,i,l − ˆ y u, j,l 

))
∂ 

∂�

(
ˆ y u,i,l − ˆ y u, j,l 

)
− 2 λ�

)
10. Until convergence 

11.Until convergence or max-iteration has been reached 
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Table 3 

The statistics of our datasets. 

Statistics Epinions Ciao Last.fm 

#of Users 22,152 1796 1407 

# of Items 296,275 16,600 12,373 

# of Feedback 912,417 35,080 86,122 

Density 0.014% 0.12% 0.49% 

# of Trusters 18,089 2342 1892 

# of Trustees 18,089 2342 1892 

# of Trusts 573,420 87,380 25,434 

Density 0.0017% 0.015% 0.71% 
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1 http://www.cse.msu.edu/ ∼tangjili/trust.html . 
2 http://www.ciao.co.uk/ . 
3 http://www.last.fm . 
4 http://ir.ii.uam.es/hetrec2011 . 
tilizing a joint framework, we can effectively predict the next-

tem for both full users and cold-start users. 

.6. Learning algorithm 

In this paper, we apply stochastic gradient descent (SGD) strat-

gy to optimize the loss function, and it draws a stochastic sample

rom all training instances. Since we design a joint model in this

aper, we randomly sample training instance from D T and D G at

ach iteration, then the gradient descent on our model for all re-

ated parameters is performed. The complete algorithm is detailed

n Table 2 and the gradients of our model towards parameters �

re: 

∂ 

∂θ

(
ln σ ( ̂  x u,i,l − ˆ x u, j,l ) − λ�2 

)

= 

(
1 − σ ( ̂  x u,i,l − ˆ x u, j,l ) 

) ∂ 

∂�
( ̂  x u,i,l − ˆ x u, j,l ) − 2 λ�

× ∂ 

∂θ

(
ln σ ( ̂  y u,i,l − ˆ y u, j,l ) − λ�2 

)

= 

(
1 − σ ( ̂  y u,i,l − ˆ y u, j,l ) 

) ∂ 

∂�
( ̂  y u,i,l − ˆ y u, j,l ) − 2 λ� (8) 

The derivatives of ˆ x u,i,l − ˆ x u, j,l are: 

∂ 

∂v U,I 
u, f 

( ̂  x u,i,l − ˆ x u, j,l ) = v I,U 
i, f 

− v I,U 
j, f 

∂ 

∂v I,U 
i, f 

( ̂  x u,i,l − ˆ x u, j,l ) = v U,I 
u, f 

∂ 

∂v I,U 
j, f 

( ̂  x u,i,l − ˆ x u, j,l ) = − v U,I 
u, f 

∂ 

∂v L,I 
l, f 

( ̂  x u,i,l − ˆ x u, j,l ) = v I,L 
i, f 

− v I,L 
j, f 

∂ 

∂v I,L 
i, f 

( ̂  x u,i,l − ˆ x u, j,l ) = v L,I 
l, f 

∂ 

∂v I,L 
j, f 

( ̂  x u,i,l − ˆ x u, j,l ) = − v L,I 
l, f 

(9) 

he derivatives of ˆ y u,i,l − ˆ y u, j,l are the same with ˆ x u,i,l − ˆ x u, j,l . 

. Experiment 

In this section, we conduct experiments on the three real-world

atasets to demonstrate the effectiveness of the proposed method.

specially, we conduct our experiment in a cold-start scenario to

nvestigate the ability of our model in dealing with UCS problem.

e also do extensive experiments to evaluate the ability of our

ethod with different settings. 
.1. Datasets 

We choose three datasets including implicit feedback, times-

amp, and social relations from different domains to evaluate our

odel: Epinions, Ciao, and Last.fm. These datasets also vary signif-

cantly in terms with density. 

Epinions . Epinions is a popular website where people can regis-

er for free and review many different types of items. It includes all

ctions of users and trust relationships among users on the web-

ite with the temporal information maintained. This dataset spans

rom January 2001 to November 2013, it is available online. 1 

Ciao . Ciao is a website where users give ratings and reviews on

arious items. This dataset was crawled from Ciao’s official site. 2 

he dataset is also available online 1 . 

Last.fm . Last.fm is an online music system. This dataset is col-

ected from the site 3 which contains social network, tag, and music

rtist listening information ranging from 1956 to 2011. The dataset

s available at 4 . 

For all the datasets, we remain one feedback for testing, one

eedback for validating, leaving others for training. We filter the

atasets to leave the users having at least 4 feedback to satisfy the

equirements for training, testing and validating. The statistics of

hese three datasets after the above filtering process are shown in

able 3 . 

.2. Evaluate metric 

In this paper, we adopt two popular top-K metrics for implicit

eedback recommendation to evaluate all the models: Precision @ K

nd NDCG @ K . 

Precision @ K . Precision measures the probability that the user

s interested in the item, Precision @ K for each user is defined as, 

precision @ K = 

| S ( K; u ) | 
K 

(10) 

here | S ( K ; u )| indicates the set of already consumed items in the

est set that appear in the top-K list. 

NDCG @ K . Normalized DCG (Discount Cumulative Gain), it ac-

ounts for the position of the hit by assigning higher scores to hits

t top ranks. the DCG @ K for each user is: 

CG @ K = 

K ∑ 

1 

2 

1 { u (i )=1 }−1 

log (i + 1) 
(11) 

here 1{} is the indicator function, and u (i ) = 1 returns 1 if u has

onsumed the item i . 

http://www.cse.msu.edu/~tangjili/trust.html
http://www.ciao.co.uk/
http://www.last.fm
http://ir.ii.uam.es/hetrec2011
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Table 4 

Parameters settings of respective methods. 

Methods Parameters 

BPR λ1 = λ2 = λ2 = 0 . 01 , β1 = β2 = β3 = 0 . 1 

SBPR λ1 = λ2 = λ2 = 0 . 01 , β1 = β2 = β3 = 0 . 1 , constant = 1 

FMC λ1 = λ2 = λ2 = 0 . 01 , β1 = β2 = β3 = 0 . 1 

FPMC λ1 = λ2 = λ2 = 0 . 01 , β1 = β2 = β3 = 0 . 1 

SPMC λ1 = λ2 = λ2 = 0 . 01 , β1 = β2 = β3 = 0 . 1 

Ours λ1 = λ2 = λ2 = 0 . 01 , β1 = β2 = β3 = 0 . 1 , α = 0 . 5 , N g = 10 
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4.3. Baselines 

To justify the effectiveness of our model, we compare our

model with several representative models which could be divided

into three categories: (1) models that are unaware of temporal and

social information (Pop, BPR); (2) models considering either social

or temporal information (SBPR, FMC, FPMC); (3) models that are

both temporal-aware and socially-aware (SPMC). 

Pop . This is a simple method recommending items accounts for

their rank of popularity in the system. 

BPR [35] . This is a sampling-based algorithm that optimizes the

pairwise ranking between observed instances and sampled nega-

tive instances. 

SBPR [36] . This method improves personalized ranking with so-

cial connections. The model is developed by Zhao et al. based on

the simple observation that users tend to assign higher ranks to

items that their friends prefer. 

FMC . This model captures the possibility that a user transitions

from one item to another by factorizing the item-to-item transition

matrix, it is not a personalized method. 

FPMC [17] . This model is the combination of Matrix Factoriza-

tion and first-order Markov Chains. It is presented by Rendle which

captures both temporal information and personalized user prefer-

ence. 

SPMC [21] . This method is proposed by He et al. in 2017. It is a

state-of-the-art method which leverages feedback from sequences,

as well as social interactions in the same model. 

4.4. Performance analysis 

4.4.1. Experiments settings 

To demonstrate the effectiveness of our model proposed in this

paper, we conduct our experiments on the three datasets. For a

fair comparison, we randomly initialize the latent factors with a

Gaussian distribution with a mean of 0 and a standard devia-

tion of 0.01 for all the latent factor models. Gird search is ap-

plied to select the hyperparameters for each model. We experi-

ment with the learning rates from [1, 0.1, 0.01, 0.001], regulariza-

tion hyperparameters from [1, 0.1, 0.01, 0.001] and dimension from

[10, 20, 30, 40, 50, 60, 70,80, 90, 100] for all the methods ex-

cept Pop, and number of G u from [5, 10, 15, 20, 25, 30] for our

model on the validate set to tune the parameters that resulted

in the best performances. Other hyperparameters are selected ac-

cording to both our experiment and previous. The main parame-

ters of respective methods are given in Table 4 , where β1 , β2 , β3 

are the learning rates and λ1 , λ2 , λ3 are regularization parame-

ters on the Last.fm dataset, Epinions dataset, and Ciao dataset re-

spectively. In addition, we preserve users who have at least one

friend for social recommender models. We select the best re-

sults of our model and other baselines as the final result, and we

conduct top-5 recommendation on the three datasets to evaluate

the performance of all the baselines. We use stochastic gradient

(SGD) to optimize the model. For each test instance, we randomly

choose 99 negative items as negative samples. We implemented

all the baselines as described in the original paper. It is worth to
otice that our experiments are based on the full user scenario

ithout a special statement. Noted the last columns in the re-

ult tables are the improvements in our model relative to the best

aselines. 

.4.2. Full user analysis 

We first compare the performances of all the models for the

ull user, where K = 60. For our model, the number of G u is set as

0, balance parameter α is set as 0.5. The experimental results for

DCG @5 and Precision @5 are summarized in Table 5 . From the re-

ults we can make observations and analysis as follows: 

Generally, our method is superior over all the baselines on both

parse and dense datasets according to the two metrics, especially

as a significant improvement on Ciao dataset. Through this com-

arison, we find SPMC is the strongest model among the baselines

ue to it integrates both social information and temporal infor-

ation into the recommendation. Our model gain 20% NDCG and

1.2% Precision improvements on average against SPMC model, this

s as expected because our model utilizes user embedding to select

etwork Neighbors, which provides more meaningful information

han explicit social relations for the recommendation. 

When comparing with other baselines, we find that: (1) Our

odel shows substantial improvements over Pop, which results

rom Pop is based on item popularity without considering any

lobal user preference information. (2) Our model also has a sig-

ificant improvement than BPR, this is because BPR is a sim-

le model which considers only static preference of the users

ithout any other side information. (3) Obviously, our model

as a much better performance than FPMC and FMC. Despite

MC and FPMC take temporal information into consideration, they

nly consider a single sequence and are lack of other auxiliary

nformation such as social information. (4) Our model outper-

orms SBPR, SBPR takes the social relations into the recommen-

ation to design a ranking method which provides a better rec-

mmendation, but it ignores temporal information thus has worse

erformance. 

From the perspective of the baselines, we find that: (1) When

omparing BPR with SBPR, we find SBPR performs much better

han BPR on both Last.fm and Epinions datasets, which shows so-

ial information can help improving recommendation. (2) When

omparing BPR with FPMC, we can notice FPMC outperform BPR

n Last.fm and Epinions datasets, and similar results can be seen

n Ciao datasets, which demonstrates that it is crucial to integrate

emporal information into the recommendation. When comparing

MC and FPMC, we can see FPMC performs better than FMC on

he three datasets. In addition, BPR outperforms FMC on Ciao and

ast.fm datasets, suggesting the importance of personalization. (3)

hen comparing SPMC and SBPR with FPMC, we find SPMC per-

orms best among them by modeling moth social influence and se-

uential influence. FPMC and SBPR only consider either temporal

nformation or social information so that their abilities are curbed.

In conclusion, our model beats all the baselines on the three

atasets, which indicates combining network embedding informa-

ion and temporal information is useful for the recommendation.

y integrating this information a joint FPMC model, our model out-

erforms all the baselines and leads to superior accuracy in im-

licit feedback recommendation. 

.4.3. Cold-start analysis 

We further investigate the performances of all the model in

ealing with UCS problem. Traditional methods usually choose

sers whose feedback is fewer than 5 as cold-start users. Since we

eed at least 4 feedback in our model, leading to less cold-start

sers achieved, thus we preserve N recent feedback for each user

o simulate the cold-start environment, where N is the threshold

alue. The previous work [21] adopted this protocol. We conduct



Y. Zhang, Z. Shi and W. Zuo et al. / Neurocomputing 386 (2020) 208–220 215 

Table 5 

NDCGs and Precisions of all models on three datasets. 

Dataset User Metric Pop BPR SBPR FMC FPMC SPMC Ours Imp 

Last.fm Full 

user 

NDCG @5 0.3019 0.4462 0.5089 0.4009 0.4647 0.5259 0.5512 + 4.8% 

Precision @5 0.2674 0.4064 0.4748 0.3549 0.4247 0.4824 0.5084 + 5.3% 

Epinions Full 

user 

NDCG @5 0.2833 0.3113 0.3701 0.3381 0.3466 0.4100 0.4284 + 4.5% 

Precision @5 0.2560 0.2812 0.3392 0.2892 0.3084 0.3779 0.3969 + 5.0% 

Ciao Full 

user 

NDCG @5 0.1332 0.1603 0.1633 0.1483 0.1691 0.1963 0.2918 + 50.7% 

Precision @5 0.1142 0.1390 0.1410 0.1177 0.1473 0.1713 0.2631 + 53.5% 

Table 6 

NDCGs and Precisions for cold-start users with different threshold value. 

Dataset User Metric Pop BPR SBPR FMC FPMC SPMC Ours Imp 

Last.fm Cold 

5 

NDCG @5 0.2741 0.3048 0.2531 0.2835 0.3169 0.3258 0.4445 + 11.8% 

Precision @5 0.2449 0.2891 0.2335 0.2537 0.2991 0.2976 0.4158 + 39.0% 

Cold 

10 

NDCG @5 0.3001 0.4251 0.3557 0.3388 0.3859 0.4031 0.4641 + 15.1% 

Precision @5 0.2665 0.3992 0.3296 0.2972 0.3635 0.3705 0.4316 + 8.1% 

Epinions Cold 

5 

NDCG @5 0.2545 0.1710 0.1917 0.2182 0.1876 0.2587 0.3478 + 34.4% 

Precision @5 0.2356 0.1522 0.1665 0.1852 0.1682 0.2345 0.3115 + 32.2% 

Cold 

10 

NDCG @5 0.3148 0.3133 0.2767 0.2968 0.2897 0.2972 0.3335 + 5.9% 

Precision @5 0.2891 0.2852 0.2482 0.2569 0.2631 0.2694 0.3007 + 4.0% 

Ciao Cold 

5 

NDCG @5 0.1214 0.0816 0.1026 0.1090 0.0831 0.1420 0.2258 + 59.0% 

Precision @5 0.1059 0.0707 0.0887 0.0854 0.0725 0.1272 0.2057 + 61.7% 

Cold 

10 

NDCG @5 0.1502 0.1324 0.1562 0.1283 0.1389 0.1647 0.2490 + 51.1% 

Precision @5 0.1292 0.1167 0.1379 0.1049 0.1238 0.1413 0.2254 + 59.5% 
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he experiments on three datasets with the threshold values as 5

nd 10, respectively. The performances of all the models in dealing

ith UCS problem with different threshold values are summarized

n Table 6 . Apparently, our model has a significant improvement

han all the baselines varying the threshold value, especially when

he threshold value is set as 5, demonstrating our model is good

t deal with UCS problem. 

From the results shown we also can see: (1) On Last.fm dataset

nd Ciao dataset, FPMC and SPMC have better performances than

ther baselines, and SPMC is the strongest among all the base-

ines, suggesting temporal information and social information are

oth essential elements for improving UCS problem. (2) On Epin-

ons dataset, we find SPMC still performs best when the threshold

alue is 5, but BPR and Pop achieve better performances when the

hreshold value is 10, which is presumably due to the influences

f social information and temporal information on this dataset are

ot effective in cold-start scenario, and we can infer that popular-

ty is also an important factor for UCS problem. 

To summarize, our model achieves valid results on three

atasets in the cold-start scenario, which is apparently due to

etwork Neighbors are more effective than explicit social rela-

ions in user cold-start issues, and we model dynamic preferences,

hich is also crucial for this problem. Compared with other base-

ines, our model shows significant improvements on Ciao dataset

nd shows better performances on Epinions dataset and Last.fm

ataset. Hence, we can say our model can effectively deal with UCS

roblem. 

.4.4. Trust cold-start analysis 

As mentioned before, cold-start users usually have fewer so-

ial links in the social network. In this paper, we call these users

s trust cold-start users. To explore the performances of all the

odels for trust cold-start users, we conduct the experiments on

he three datasets for users with fewer than 5 and 10 social links

ased on the cold-start scenario, where the threshold value of

old-start users is 5. The results are summarized in Table 7 . From

he results we can see that our model achieves significant im-

rovements than other baselines, demonstrating the effectiveness

f Network Neighbors information for dealing with trust cold-start
sers. Among the baselines, SPMC and FPMC perform much bet-

er than other baselines, whereas SBPR performs worse than oth-

rs, which is different from the previous results in Table 6 , sug-

esting the abilities of social methods for UCS problem are lim-

ted by sparse social networks when social links are brave. It also

roves the importance of temporal information in dealing with this

roblem. 

.4.5. Dimension of latent feature 

To analyze the effect of dimension K value on our model, we

rst fix the number of G u as 10, balance parameter α as 0.5, then

e conduct the experiment with different K values from [10, 20,

0, 40, 50, 60, 70, 80, 90, 100] for all the models except for Pop.

ig. 6 illustrates the two metrics with variations in K values on

he three datasets. As the results showed, a larger K value always

eads to a better performance for our model which indicates our

odel typically benefits from larger values of K , also our model

utperforms all the baselines with different K values. Based on the

erformances we can see: (1) On Epinions dataset, the results are

ore stable than other two datasets, which is apparently due to

pinions dataset is larger than Ciao and Last.fm datasets. (2) On

iao dataset, our model has more significant improvements com-

ared with other baselines, which is probably due to G u plays a

ore important role on Ciao dataset. But the curve is not as sta-

le as it on Epinions dataset, because Ciao dataset is smaller than

pinions dataset. (3) On Last.fm dataset, there are also increasing

rends for all the models with the increasing of K values, but the

ncreasing trends are not significant when K = 30, because Last.fm

ataset is a smaller dataset than Ciao dataset and Epinions dataset

nd lager K values will result in over-fitting. 

Generally, from the curves we can see that a larger K usu-

lly leads to better performances of all the models on the three

atasets, this is mainly due to higher latent dimensions contains

ore information. However, the increasing trend of our model

s not significant as before after K = 60 on both Ciao and Epin-

ons datasets, and most baselines achieve good performances when

 = 60. Therefore, based on the analysis on the three datasets for all

odels, we set K = 60 as the default setting in this paper to reduce

rain complexity and avoid over-fitting. 
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Table 7 

NDCGs and Precisions for trust cold-start users with different threshold value. 

Dataset User Metric Pop BPR SBPR FMC FPMC SPMC Ours Imp 

Last.fm Cold 

5 

NDCG @5 0.1972 0.2465 0.2543 0.2078 0.2586 0.2517 0.3450 + 33.4% 

Precision @5 0.1714 0.2324 0.2335 0.1746 0.2434 0.2321 0.3179 + 30.6% 

Cold 

10 

NDCG @5 0.2187 0.2569 0.2850 0.2332 0.2822 0.2782 0.3668 + 29.9% 

Precision @5 0.1913 0.2422 0.2616 0.2052 0.2651 0.2565 0.3393 + 32.2% 

Epinions Cold 

5 

NDCG @5 0.2559 0.1744 0.2048 0.2327 0.2586 0.2775 0.3122 + 12.5% 

Precision @5 0.2366 0.1568 0.1758 0.1969 0.2434 0.2531 0.2816 + 11.2% 

Cold 

10 

NDCG @5 0.2604 0.1761 0.2668 0.2234 0.2822 0.2337 0.3151 + 11.6% 

Precision @5 0.2417 0.1578 0.2386 0.1882 0.2651 0.2102 0.2840 + 7.1% 

Ciao Cold 

5 

NDCG @5 0.1487 0.1044 0.1026 0.1261 0.1200 0.1751 0.2672 + 52.5% 

Precision @5 0.1269 0.0931 0.0887 0.0992 0.1069 0.1524 0.2359 + 54.7% 

Cold 

10 

NDCG @5 0.1453 0.0989 0.1429 0.1095 0.0876 0.1803 0.2523 + 39.9% 

Precision @5 0.1238 0.0865 0.1262 0.0839 0.0792 0.1641 0.2270 + 38.3% 
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Fig. 6. The NDCGs and Precisions of all the models with different K values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

f  

m  

w  

b  

3  

r  

e  

a  

w  

a  

n  

w  

i  

l  

f  

t

4.5. Different methods for selecting Network Neighbors 

We further conduct the experiments to investigate the effec-

tiveness of different methods to achieve Network Neighbors. First,

We only send social relations into Node2vec model to achieve Net-

work Neighbors, we call this method JPMC-os. Fig. 7 shows the re-

sults of our model on the three datasets. From the results we can

notice: On Epinions and Ciao datasets, JPMC has a significant im-

provement than JPMC-os with different K values. Despite the im-

provement is not significant on Last.fm dataset, JPMC still outper-

forms than JPMC-os. It demonstrates that added links are crucial

for selecting more suitable Network Neighbors. We also try to se-

lect Network Neighbors with high PMI value without network em-

bedding process, which is called as JPMC-PMI. From the results we

can see that JPMC-PMI performs worst among the three kinds of

methods on the three datasets. It demonstrates that network em-

bedding method is irreplaceable, due to it can mine deep connec-

tion information among users. 
.5.1. Number of Network Neighbors 

We also analyze the performances of our model with the dif-

erent number of Network Neighbors N g . To investigate when our

ethod makes a better recommendation with different N g values,

e conduct the experiment on all the datasets where the num-

er of Network Neighbors is from the range of [5, 10, 15, 20, 25,

0], we fix K = 60, balance parameter α = 0 . 5 . Fig. 8 illustrates the

esults by varying the value of N g on the two metrics. It is appar-

nt that the curves of two metrics on the three datasets are much

like. We observe from the results that our model performs best

hen the number of N g is 10 on Epinions dataset and Ciao dataset,

nd 5 on Last.fm dataset. There is a decreasing trend when the

umber of N g is larger than 10 on both Ciao and Epinions datasets,

hich is presumably due to top 10 users have much more similar-

ties with the user, while more than 10 users will bring more use-

ess information which will mislead the recommendation. There-

ore, we set the default setting of the number of N g as 10 on the

hree datasets. 
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Fig. 7. The NDCGs and Precisions of three methods with different methods for selecting Network Neighbors. 
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.6. Influence of balance parameter α

We also analyze the influence of balance parameter α on our

odel, we conduct the experiments with different α values from

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1], we fix K as 60, N g as

0. Fig. 9 shows the results of two metrics on the three datasets.

rom the figure we can see: On Ciao dataset, our model achieves

est performance when α is 0.5, and the performance begins to

rop when the α value is larger than 0.5. On Last.fm dataset, the

erformance of our model continues to rise until α is 0.5, when

is larger than 0.5, the trend of rise is not apparent as before.

n Epinions dataset, the trend of two metrics is similar to that

n Ciao dataset, our model achieves best NDCG when α is 0.6,

hile achieves best precision when α is 0.5. The results indicate

ur model performs best when α = 0 . 5 in most cases, thus we set

he value of α as 0.5 in our model to achieve best performance. 
.6.1. Converge 

At last, we investigate the convergence of our model on the

ifferent datasets. Fig. 10 demonstrates the NDCG and Precision of

ur model on all datasets in 200 iterations. Noted that at each

raining iteration we choose all positive feedback in the train-

ng set. We also notice that our model converges fast on Ciao

nd Epinions datasets within 20 iterations, fewer than 80 itera-

ions on Last.fm dataset. This fact indicates our model can achieve

romising convergence on different datasets. From the curves we

an see: Our model performs best on Last.fm dataset among the

hree datasets, but worst on Ciao dataset, which is mainly be-

ause the user-item interactions and social relations on Last.fm

ataset are denser than other two datasets, while Ciao dataset

s a small and sparse dataset. On Epinions dataset, the curve is

ore stable because it is a larger dataset than the other two

atasets. 
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Fig. 8. The NDCGs and Precisions of all the models with different number of Network Neighbors. 

Fig. 9. The NDCGs and Precisions of our model with different α values. 
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Fig. 10. The NDCGs and Precisions of our model with the increasing of epoch value. 
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5. Conclusion and future 

In the paper, we bring forward a novel joint model combining

social network embedding information and temporal information,

which offers significant advantages both in terms of improving the

recommendation quality and in dealing with the UCS problem as
ompared to existing work. We first pre-train the representations

f all the users by Node2vec method, then we select Network

eighbors with high similarities. To integrate it into recommen-

ation, we secondly construct SNA matrix and DN sequence

ccording to the Network Neighbors. We further propose a joint

odel under the FPMC framework to capture both user level and
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roup level preferences. Our model can properly utilize social

nd temporal information to predict the next-item of the user.

specially, we can deal with cold-start users with less social links.

n the future, we will identify deeper information from social net-

ork to effectively solve user cold-start issues. In addition, we will

xplore the impact of temporal information on user consumption

ehavior to build an incremental recommender system. 
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