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Missing values in clinical time-series data are pervasive and inevitable; they not only
increase the complexity and difficulty of analyzing the data but also lead to biased results.
To tackle these two problems, researchers have been exploring recurrent neural network
(RNN)-based methods for detecting how well missing values are addressed with the aim
of achieving state-of-the-art performance. However, these methods have two practical
drawbacks. 1) Handling time-series data with multiple, irregular, abnormal values is diffi-
cult. 2) The patterns that may be present in the missing clinical data are not thoroughly
considered. Moreover, to the best of our knowledge, none of these methods have been
explicitly designed to dynamically optimize the imputation quality for better performance
in the realm of clinical time-series analytics. By considering the quality of imputed values,
we propose a 2-step integrated imputation-prediction model based on gated recurrent
units (GRUs) for medical prediction tasks. In the first step, the missing values are imputed
using a sophisticated model based on a replenished GRU with a hidden state decay mech-
anism (RGRU-D), which is followed by evaluation through two additional layers. In the sec-
ond step, the optimized imputed values are used to predict the risk of mortality in critical
patients. Our model effectively supplies missing values for the masking, time interval,
bursty, and cumulative missing rate variables within an integrated deep architecture.
Extensive experiments on a real-world ICU dataset demonstrate that our model performs
better than the compared methods in terms of the imputation quality and prediction
accuracy.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Multivariate time-series data are ubiquitous in clinical studies. However, these data inevitably have missing observations
or missing values, which can significantly affect the performance of downstream applications [1]. A missing value is a data
value that is not collected or stored for a variable in the current observation, which leads to an empty cell in the dataset. At
worst, missing values can significantly influence the conclusions drawn from the data [2]. There are four main reasons for
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missing clinical values: equipment failure; clinicians failing to record the data; no intention to collect the data (e.g., the
patient was not suffering from a relevant symptom or comorbidity); or an intention to collect the data, but the features
returned to normal, failing to realize data charting [3].

Many procedures exist to address missing values [4]. A straightforward solution is to simply ignore the missing records,
but this will change the original data structure. To maintain the original structure of the data, a more conventional method is
to replace the missing value with the sample means, but the quality of the means may be exceedingly different from that of
the application domains [5]. An alternative method for handling missing values is to implement an imputation technique,
such as the k-nearest neighbor (KNN) approach, matrix factorization (MF) [6,7], or multivariate imputation by chained equa-
tions (MICE) [8]. However, most of these methods require relatively strong assumptions about the missing values [9,10].
Thus, if the corresponding imputation algorithms are not specifically designed based on the assumptions or the data do
not meet the assumptions, then the imputation performance will be suboptimal.

Motivated by rapidly rising costs and continued concerns about variations in the content and quality of healthcare, the
science of clinical prediction is steadily evolving. Mortality prediction is one of the essential tasks in healthcare, is important
for inferring clinical outcomes and has attracted much attention in both academia [11–14] and industry [15]. With the col-
lection of a large number of electronic health records globally, there is an indispensable need to develop effective models for
predicting mortality based on these data. However, all of the existing mortality prediction models suffer from the missing
value problem. Therefore, developing a mortality prediction model along with an efficient missing value processing mech-
anism is important.

In this paper, we propose a 2-step integrated imputation-prediction model based on a recurrent neural network (RNN) to
fill in the missing values in multiple, correlated, sequential clinical data. The model is called the Model for Imputation and
Prediction (M4IP). M4IP has the following characteristics: 1) it iteratively fills in the missing values with optimized values
using an additional evaluation step, and 2) it logically incorporates the optimal imputed values into a unified deep frame-
work for clinical prediction tasks. M4IP allows the RNN to accept masking, time interval, cumulative missing rate, and bursty
data as inputs. In this way, M4IP can simultaneously evaluate both the imputation quality and prediction performance in a
unified framework. Objectively, this research makes the following contributions:

1) A well-considered imputation mechanism for time-series ICU data. Our model does not impose specific assump-
tions and fully considers the patterns within and reasons for the missing values, such as bursty or cumulative missing
rate. Hence, our model is more accurate and applicable to ICU applications, where irregularly sampled, missing, or
noisy data are common, than previous methods.

2) A novel integrated framework that directly imputes missing values with a quality evaluation. Our RNN-based 2-
step imputation-prediction model, which is designed for clinical data, integrates data imputation and data classifica-
tion into the same process rather than merely tuning the weights for smoothness [12].

3) Dynamic feature-specific constraints for imputation filtering. Using feature heterogeneity and diversity, we
designed a set of learnable, dynamic feature-specific constraints to filter the imputed values, which makes estimating
the missing values more accurate.

4) Comprehensive experiments and discussion. To validate the effectiveness of M4IP, we evaluated our model in mor-
tality prediction with respect to four different diseases with the Medical Information Mart for Intensive Care (MIMIC-
III) dataset [16], which contains 300+ clinical measurements and 200+ medical treatments. The results show that our
model outperforms the state-of-the-art models in terms of both the imputation quality and classification accuracy.

2. Related work

2.1. Clinical missing value imputations

Missing value imputation is a hot research topic in clinical practice and has attracted the attention of many researchers
[17–20]. A great deal of the related literature is dedicated to imputing missing values in datasets. Techniques range from
simply deleting the offending records to statistical computation methods [21,22] to artificial deep learning methods [23].
Yoon et al.[24] summarized three widely used methods for this problem: interpolation, imputation, and matrix completion.
Interpolation methods [9,25] attempt to reconstruct the missing data by capturing the synchronous (nontemporal) relation-
ships in other streams of similar data. Conversely, imputation methods [9,25] are used to reconstruct missing values by cap-
turing the synchronous relationships within the given stream. Furthermore, matrix completion methods [6,26–29] divide
the temporal data into slices and then make assumptions about a specific model from the data generation process and/or
the missing data pattern. Among these methods, the most common is MICE [30]. MICE first initializes missing values arbi-
trarily and then estimates each missing variable based on a chain equation — an approach that has been shown to perform
well and has therefore been included for comparison in our experiments.

Researchers have attempted to impute the missing values using RNNs [1,12,24,31] with encouraging results. The recur-
rent components are trained with classification or regression components, which has significantly boosted the accuracy. As
mentioned in the Introduction, there are two closely related works in this stream, i.e., the gated recurrent units with a decay
mechanism (GRU-D) [12] and bidirectional recurrent imputation for time series (BRITS) [1] methods. GRU-D integrates miss-
ing data patterns into the model to improve the prediction. We call this a 1-step method, which means that imputation and
608
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prediction work together without any output or evaluation of the imputed results. The advantage of the 1-step method is its
ability to considerably improve the prediction accuracy. However, it cannot ensure the quality of the imputed values. BRITS
is a more generic 2-step imputation method that uses a bidirectional recurrent imputation method for time-series data that
does not require any specific assumptions to hold. BRITS has achieved promising results for air quality, healthcare, and
human activity data. Although BRITS uses an imputation mechanism, its performance is not as effective when contending
with time-series data and dynamic time windows; In particular, its efficacy is limited when the sequence has multiple irreg-
ular peaks. Moreover, these methods were not specifically designed for ICU data, so they may incorrectly weight certain clin-
ical patterns, such as burst distributions. This is a major problem, as ICU features can vary dramatically over a short period of
time, and it explicitly demonstrates that the data are not always smooth.

2.2. Mortality prediction

Mortality prediction is important for inferring clinical outcomes [32–34]. In clinical practice, healthcare workers use med-
ical scoring systems as severity assessment tools for patients, most of which use rule-based methods, such as the Acute Phys-
iology, Age, Chronic Health Evaluation (APACHE) score [35], the Sequential Organ Failure Assessment (SOFA) score [36], and
the Simplified Acute Physiology Score III (SAPS 3) [37]. However, all these systems implement fixed clinical decision rules
that are largely based on clinical statistics [38], but the measurement indicators are limited to a score tend. For instance,
the SOFA score is based on only 11 indicators, whereas the MIMIC-III benchmark dataset includes over 4000 individual indi-
cators. When making a diagnosis among thousands of diseases, a set of indicators in the double digits is inadequate.

Fortunately, advances in deep learning are now enabling mortality risk prediction based on a deeper foundation of symp-
tomatology from electronic health records. In fact, several studies that rely on deep learning techniques to forecast in–hos-
pital mortality risk have significantly improved the quality of acute hospital care, e.g., Rajkomar et al., 2018 and Song et al.,
2018 [39,40]. However, these methods do not have efficient mechanisms for handling missing data.

Based on the abovementioned concerns, we propose a 2-step model, namely, M4IP, which is designed for imputing ICU
data first by incorporating multiple missing data patterns and multiple imputation strategies with an imputation quality
control mechanism and then conducting mortality prediction based on the imputed data.

3. Preliminaries

In this section, we introduce some key concepts in the context of our framework, followed by a formal description of our
M4IP method. The notations used in this paper are listed in Table 1.

3.1. Key concept definitions

Definition 1 (Clinical actions). In the medical domain, to cure patients, a series of clinical operations exist, such as bedside
monitoring, laboratory tests, microbiology tests, and medical treatment. In this paper, these operations are called clinical
actions. For example, one of the clinical actions is bedside monitoring. This action consists of measuring the heart rate,
respiratory rate, temperature, etc. The clinical actions can be represented by A ¼ a1;a2; . . . ;aNð Þ 2 RD, which is a
concatenated vector, where ai represents a collection of action features and dim aið Þ is the dimension of action ai.
D ¼ dim a1ð Þ þ dim a2ð Þ þ . . .þ dim aNð Þ.
Table 1
Description of the main notations used in this paper.

Notation Description

A Clinical actions
X Multivariate medical time series
M Input mask, indicates if the value is missing or not
S Input timestamp
D Missing interval
B Burstiness parameter, bursty
CMR Cumulative missing rate
SW Imputation switch
L x̂; xð Þ Loss function
tw Length of the time window
MAX Maximum Xj value
MIN Minimum Xj value
PD Probability distribution of Xj values
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Fig. 1. Example of multivariate time series with missing values. These time-series data consist of a1 to a3, a total of 3 actions and 4 features (a3 has two
features, d3 and d4, which are marked in aquamarine environments). These multivariate time-series data have seven observations.
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Definition 2 (Multivariate medical time series). For patient p, the corresponding multivariate medical time series can be

defined as Xp ¼ xp
1; x

p
2; � � � ; xp

Tp
� � 2 RD�Tp , where xpi is the multivariate observation of patient p in the i-th time window and

Tp is the total number of time windows. Fig. 1 shows an example of multivariate time-series data with missing values for
a patient.
Definition 3 (Mask). As shown in Fig. 1, missing values are ubiquitous in clinical data. As noted in [12], missing values can
provide auxiliary information for learning tasks. To flag these missing values, we use a mask to denote the occurrences of

missing values in different time windows. A mask can be represented by a matrix: Mp ¼ mp
1;m

p
2; . . . ;m

p
Tp

� � 2 RD�Tp for Xp.
Xp

i;j represents the i-th feature in the j-th time window for patient p, whileMp
i;j 2 0;1f g denotes that the i-th feature is missing

in the j-th time window.
Mp
i;j ¼

1; if Xp
i;j is observed

0; otherwise:

(
ð1Þ
Definition 4 (Imputation switch vector). In real-world scenarios, clinical actions may require different imputation strategies.
For example, the values of a medical treatment (e.g., action a3 in Fig. 1) can be missing because there was no medicine pre-
scribed to and taken by the patient during the time period. The missing values need to be imputed with 0 s to make sense
from a medical point of view. In contrast, the missing values for heart rate records (e.g., action a1 in Fig. 1) require reasonable
imputations that effectively reflect the physiological conditions. In this work, the former imputation method is treated as a
static imputation method, while the latter is regarded as a dynamic imputation method, which is learnable. To incorporate
two different strategies in the imputation procedure, we design an imputation switch vector sw ¼ sw1; sw2; . . . ; swNð Þ 2 RN to
choose the imputation method for each action. The entry of the switch vector, swi, is defined by:
swi ¼
1; if action ai requires dynamic imputation
0; otherwise:

�
ð2Þ
Definition 5 (Charting timestamp matrix). To align the charting time of each action with different time windows, we use a

matrix Sp 2 RD�Tp , as shown in Fig. 4, to denote the actual charting time for each feature. For those features that are charted
multiple times within one time window, we use the most recent value. In this way, more accurate charting times are pre-
served. Moreover, the missing interval between two valid records, which is regarded as another important missing data pat-
tern [12], can be more precisely calculated than in previous works [1,12], where only the number of time windows between
two valid values is available. Our proposed work can utilize the exact interval time as additional information when consid-
ering the decay effect.
Definition 6 (Missing interval). In healthcare, the influence of the last-observed input variables diminishes over time when
the subsequent values are missing [41]. To capture the relationship between the missing value and the duration of its miss-
ingness, in this work, we introduce a vector, dpj 2 RD; j ¼ 1;2; � � � ; Tp� �

, to capture the duration of missing values at time step j

since the last-observed values (LOs) for each patient. Thus, the entire representation of missing intervals can be depicted by a

matrix Dp ¼ d
p
1; d

p
2; . . . ; d

p
Tp

n o
2 RD�Tp , which helps us record the length of time that the values are missing. To calculate the

missing intervals, we assume that the start time and the end time for the j-th time window are twsj and twej, respectively.
The length of the time window is tw ¼ twej � twsj. The time stamps of the charted features are recorded in a matrix Sp. Thus,
the missing interval, Dp

i;j, of the i-v feature in the j-th time window for the p-th patient is calculated as follows:
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Dp
i;j ¼

0 if Mp
i;j ¼ 1

tw if j ¼ 1 and Mp
i;1 ¼ 0

twej � Spi;j�1 if j > 1 and Mp
i;j ¼ 0 and Mp

i;j�1 ¼ 1

1twþ Dp
i;j�1 if j > 1 and Mp

i;j ¼ 0 and Mp
i;j�1 ¼ 0:

8>>>>><>>>>>:
ð3Þ
Taking as an example feature d1 from Fig. 5, the values of d1 are missing in the 4-th, 5-th, and 6-th time windows. Accord-
ing to Eq. 3, the corresponding missing intervals for d1 are Dp

1;4 (twe4 � Sp1;3 ¼ 35 mins), Dp
1;5 (twe5 � twe4 þ Dp

1;4 ¼ 65 mins),

and D1;6 (twe6 � twe5 þ Dp
1;5 ¼ 95 mins), respectively. Time intervals can record the exact missing data duration for all the

multivariate time-series data, which can provide a more precise missing data pattern for training.
Definition 7 (The time-series data burstiness parameter). The burstiness of temporal data is a popular measure in network
analysis and time-series anomaly detection [11], where high values of burstiness indicate the presence of rapidly occurring
events in a short period. In medical time-series data, burstiness is an important pattern that characterizes the intensity of
feature changes as well as the severity of patient illness. For example, under normal circumstances, a patient’s heart rate is
close to its mean, while during the critical period, the heart rate can vary to a greater extent. During the whole ICU stay of a
patient, the length of the critical period is shorter than that of the normal period. Inspired by related works [11,42], we
introduce a burstiness parameter, namely, bursty, to help us capture the irregular clinical patterns in a clinical feature across
multiple events. In other words, bursts can capture the temporality of medical features and provide information about the
overall dynamics of patients’ conditions, which can improve the imputation performance and mortality prediction results.

We define the bursty matrix for patient p as Bp ¼ bp
1;b

p
2; . . . ;b

p
Tp

n o
2 RD�Tp

, where bp
j is the bursty vector for the j-th time

window. Let lp
i;j and r

p
i;j be the mean and standard deviation of Xp

i;1;X
p
i;2; . . . ;X

p
i;j

n o
, respectively. Then, a patient’s burstiness

for the i-th feature in the j-th time window can be calculated as:
Bp
i;j ¼

rp
i;j
�lp

i;j

rp
i;j
þlp

i;j
þc j > 1

�1 j ¼ 1;

8<: ð4Þ
where c ¼ 1:4e� 45 to avoid dividing by zero. We set Bp
i;j ¼ �1 if there are no values up to the j-th time window. Bp

i;j can take

a value ranging between �1 and 1. Specifically, Bp
i;j ¼ �1 indicates a periodic sequence, while Bp

i;j ¼ 0 indicates a Poisson dis-

tribution in the intervening sequence. When Bp
i;j reaches 1, the sequence becomes more bursty [42]. For example, the bursti-

ness of feature d3 (in Fig. 6) in the 3-rd and 4-th time windows is Bp
3;3 ¼ Bp

3;4 ¼ �1, which indicates that there are no value
changes to d3 in the 3-rd and 4-th time windows. Afterwards, d3 increases in the 5-th and 6-th time windows
(�1 < Bp

3;5 < Bp
3;6), which indicates that the variation in the 6-th time window is greater than that in the 5-th time window.

As shown in Fig. 6, we use the cumulative burstiness and ignore the missing values when calculating the burstiness. That is,
we use only the values up to and including the current observation to calculate rp

i;j and l
p
i;j; if X

p
i;j is missing, we replace it with

the latest calculated value according to Eq. 4.
Definition 8 (Cumulative missing rate (CMR)). The last missing data pattern in medical time-series data considered in this
work is the CMR for each feature. The missing rate of the features in the dataset that are frequently used is particularly useful
because the imputation difficulty is different between low and high missing rates. A lower missing rate can result in more
sample observations, while higher rates limit the number of samples. Therefore, we propose calculating the missing rates for
features in a cumulative manner and embedding them into M4IP as additional information, aiming to improve the
imputation and mortality prediction performance. Given a multivariate time series Xp, for the i-th feature in the j-th time
window, the total number of variables we can observe up to the j-th (j P 1) time window is a, and the corresponding CMR is
defined as follows:
CMRp
i;j ¼

a
j ; if Mp

i;j ¼ 0

0; if Mp
i;j ¼ 1:

(
ð5Þ
4. Problem description

In this work, we aim to handle the missing value problem in clinical time-series data with quality assurance. Many met-
rics can be used to address clinically missing values (e.g., MICE [8] and MF [43]). However, they often require strong assump-
tions, such as missing completely at random (MCAR) [2], smoothing [8], and nonnegative values [43]. As described in the
Related Work section, the inherent limitations of these works greatly restricted their usage in clinical scenarios. Therefore,
in our work, the proposed M4IP has two steps: in the first step, the missing values are imputed using the abovementioned
611



Fig. 2. Example of a missing value mask. A missing value is marked as 0 in M; in contrast, if the value exists, then it is marked as 1 in M.
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patterns, and in the second step, the time-series classification problem is solved. The first step aims to impute the missing
values in Xp as accurately as possible; the problem can be formulated as follows:
min kX̂p � Xpk2
� �

; ð6Þ
where X̂p is the imputed matrix and Xp is the ground truth matrix.
The second step is a traditional classification problem. In this paper, we used the case of mortality predictions for ICU

stays of 30 days or less. To integrate the classifications into the imputed network, a classification label lp 2 0;1f g is intro-
duced for Xp, where lp ¼ 1 indicates that the patient dies within 30 days after admission to the ICU. The mortality prediction
goal is to predict the label lp by using M4IP based on Xp.

Input The basic input is the multivariate time-series data Xp (Fig. 1), with missing values, imputation switch SW (Fig. 3)
and timestamp data Sp (Fig. 4). To fully describe the clinical missing data patterns, we add four calculated matrices Mp

(Fig. 2), Dp (Fig. 5), Bp (Fig. 6) and CMRp (Fig. 7) as replenishment inputs:
I ¼ Xp; SW ; Sp;Mp;Dp;Bp;CMRp� � 2 R7D�Tp : ð7Þ

As illustrated in Figs. 3–8, the basic inputs are input time series X, imputation switch SW and input timestamps S. The

replenishment inputs are the mask M, time interval D, bursty B and cumulative missing rate CMR parameters, and the
replenishment inputs can be calculated by using Algorithm 1.

Algorithm 1: Calculation of the replenishment inputs
612



Fig. 3. Example of an imputation switch vector. Assuming action a1 is heart rate monitoring and action a3 contains two input medical features, the
corresponding entries in the switch vector that control the imputation strategies are sw1 ¼ 1 and sw3 ¼ 0, respectively. In other words, sw1 ¼ 1 indicates
that missing values in action a1 require dynamic imputation, while sw3 ¼ 0 means that missing values in action a3 require only static imputed values (i.e., 0
s).

Fig. 4. Example of a charting timestamp matrix Sp . Spi;j records the actual timestamp of the i-th feature in the j-th time window for patient p. For example,
Sp2;1 indicates that the observation occurs at 23:51 on day 8 after admission, while Sp2;2 means that the next value is recorded at 00:36 on day 9. Note that the
length of the time window (tw) is 30 min.

Fig. 5. Example of a missing interval.

Fig. 6. Example of bursty.

Fig. 7. Example of the CME.

Z. Shi, S. Wang, L. Yue et al. Information Sciences 579 (2021) 607–622
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Fig. 8. Proposed 2-step integrated imputation-prediction model (M4IP).
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Output There are two kinds of output, the imputation output and the mortality prediction output. For the first T � 1ð Þ-th
step, we give the imputation output, and we output the mortality prediction results only in the final step T. The first output is
used to impute the missing values, and we can add a constraint to these imputed values. This output can also be verified by
domain experts (e.g., clinicians and nurses). Therefore, the imputed data can have a higher confidence in terms of quality
assurance. The second output is based on a specific prediction task; in this paper, we make mortality predictions, which
is a binary classification task.

5. Proposed approach

The architecture is developed based on a 2-step strategy. First, the missing values are learned directly in a dynamic (re-
current) way based on the current values. Then, the imputed data were used to make the mortality predictions. There are
two distinct advantages of this approach. 1) The missing values are imputed according to the recurrent dynamics and can
be shown to the clinicians to evaluate the patient’s status more precisely. 2) The prediction performance can be significantly
boosted by basing the predictions on imputed data. As shown in Fig. 8, the integrated network consists of seven parts: an
input layer, a neaten layer, a recurrent layer, a regression layer, an estimated layer, a constraint layer, and an output layer.

5.1. The input layer

In the input layer, we expand N actions into D features, which include three original inputs, namely, 1) the time-series
data Xp, 2) adjoint data charting timestamp matrix Sp, and 3) imputation switch matrix SW , and four calculated inputs as
replenishment input matrices, namely, 1) the mask data Mp, 2) bursty data Bp, 3) cumulative missing rate CMRp, and 4) time
interval Dp. The original inputs can be directly obtained from the clinical time-series data. The replenishment inputs can be
calculated by using Algorithm 1.

5.2. The neaten layer

As time-series data Xp contain missing values, they cannot be directly transferred to the RNN. The neaten layer is the first
imputation step and is designed to contend with missing values. To provide an initial value to the missing data, we have
considered three different aspects: 1) Different actions require different imputation strategies. Bedside sensors and med-
ical treatments were taken as examples. At the i-th observation, the temperature information for patient p is missing, so we
should replace the missing value with an imputed value. However, this imputation strategy should not apply to missing val-
ues in medical treatment records. 2) For the same action, different features require different imputation strategies. For
example, in the action of bedside monitoring, the temperature tends to the sample mean, while the pressure of the pul-
monary artery tends to the population mean [44,45]. The sample mean of the temperature is the average value of one
patient’s temperatures, and the population mean is the average value of all patients’ temperatures. 3) For a particular fea-
ture, the imputation strategy should vary over time for a particular feature. During the critical period, the feature value is
likely to reach its extreme. In contrast, the feature is more likely to hover around its mean in a normal situation. For example,
the average normal body temperature is generally accepted to be between 36.5 and 37 �C, but for a patient with a fever, the
body temperature is more likely to be over 38 �C. Thus, during a patient’s admission, the imputation strategy should dynam-
ically consider illness severity over time to reflect the true conditions.

With Eq. (1), we can use the following method to give an initial value to the missing data:
Xp
i;j �Mp

i;jX
p
i;j þ 1�Mp

i;j

� �bXp
i;j; ð8Þ
614



Fig. 9. Illustrations of the GRU and RGRU-D.
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where bXp
i;j is the imputed value obtained by our pretrained method P xð Þ. P xð Þ uses one of eight basic imputation methods: the

sample mean (SM), median (ME), population mean (PM), KNN, LO or MICE:
P xð Þ ¼ min SM xð Þ;ME xð Þ; PM xð Þ; KNN xð Þ; LO xð Þ;MICE xð Þð Þ: ð9Þ

According to our imputation strategies, basic imputation is an unsupervised method that is designed for each missing ele-

ment Xp
i;j. By adding an imputation switch SW that can be flipped, the final state of the initial imputation can be calculated as

follows:
Xp
i;j �Mp

i;jX
p
i;j þ SWi;j 1�Mp

i;j

� �bXp
i;j: ð10Þ
According to the bidirectional correlated recurrent imputation mechanism in the backpropagation process, we can iter-

atively impute the missing values in the sequence using a loss functionL bXp
i;j;X

p
i;j

� �
, which is based on the historical data and

measurements of the neighbors in each time window j.

5.3. The recurrent and regression layers

These two layers, together with the estimated layer, are the main components of the imputation process. The recurrent
component is achieved by an RNN, and the regression layer is achieved by a fully connected network. We adopted a replen-
ished GRU with a hidden state decay mechanism, named RGRU-D, for the recurrent layer. The structures of the GRU and
RGRU-D are shown in Fig. 9.

The typical structure of the GRU is shown in Fig. 9(a). For each j-th hidden unit, the GRU has a reset gate rj and an update

gate zj to control the hidden state hj at each observation j. Formally, the initial hidden state h0
j is initialized as a vector of

zeros, and then, the model is updated by:
rj ¼ r W rxj þ Urhj�1 þ br
� � ð11Þ

zj ¼ r Wzxj þ Uzhj�1 þ bz
� � ð12Þ

~hj ¼ tanh Wxj þ U rj � hj�1
� �þ b

� � ð13Þ

hj ¼ 1� zj
� �� hj�1 þ zj � ~hj; ð14Þ
where matrices Wz;W r;W;Uz;Ur , and U and vectors bz;br , and b are the model parameters, r �ð Þ is an elementwise sigmoid
function, and � is elementwise multiplication.

Two important properties have been observed in the healthcare domain. First, the values of a missing variable tend to be
the default value if the last observation was recorded quite a long time ago [46]. Second, the influence of the last-observed
variables diminishes over time when the following values are missing [41]. As shown in Fig. 9(b), RGRU-D adds two trainable
decay components (cx and ch) to the input and hidden layers. A decay rate vector c is defined as follows:
cj ¼ exp �max 0;Wcdj þ bc
� �� �

; ð15Þ

where Wc and bc are trained on the data along with the other parameters. First, cj decays the input over time toward its
empirical mean:
X
�
i;j �Mi;jXi;j þ SWi 1�Mi;j

� �
ci;jXi0 ;j þ SWi 1�Mi;j

� �
1� ci;j

� �
Xi;j; ð16Þ
where Xi0 ;j is the last value observed for the i-th feature, SWi is the imputation switch for the i-th feature, and Xi;j is its sample
mean. Second, RGRU-D adds a temporal decay factor cj to the hidden state, and the decay function is:
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~hj�1 �cj � hj�1: ð17Þ

Next, the RGRU-D adds three replenishment sources directly to the hidden state (marked in red) to capture the clinical

patterns in multivariate time-series data individually: a mask matrix M, a bursty matrix B, and a CMR matrix denoted by C.

By introducing these replenishment sources, ~hi can be redefined as:
~hj ¼ tanh W~xj þ U cj
~hj�1

� �
þ Vmmj þ Vbbj þ Vddj þ V ccj þ b

� �
; ð18Þ
where ~xj can be calculated with Eq. (16).

5.4. The estimated layer

This layer is based on the context of an ICU and the fact that every part of the human body is closely related; therefore,
there is a great deal of interplay between the outcomes of many measures. In this work, we produce two kinds of estimations
in this layer. The first is feature-related (FR) estimation, in the j-th time window, for two features da and db (a – b). Similar to
FR estimation, the second type of estimation is temporal correlation within one measurable variable. For example, the heart
rate of a patient should be temporally correlated over a period of time. We call this estimation type history-related (HR) esti-
mation. This type can be formulated as follows: for the j-th and k-th time windows, where j – k;X�;j and X �;k should be
correlated.

For FR estimation, we first obtain the complement observation ~xj by M4IP, and then, we define our FR estimate as qj:
qj ¼Wq~xj þ bq; ð19Þ

where Wq and ba are corresponding parameters, which are obtained from their regression layers. We restrict the diagonal of
the parameter matrix Wq to zeros. Thus, the i-th element in qj is exactly the estimation of Xi;j based on the other features.

For HR estimation, we produce an estimation sequence Xþ ¼ xþ1 ; x
þ
2 ; � � � ; xþT

� � 2 RD�T in the forward direction, accompa-
nied by a loss sequence ‘þ1 ; ‘

þ
2 ; � � � ; ‘þT

� �
. Similarly, in the backward direction, we obtain another estimation sequence

X� ¼ x�1 ; x
�
2 ; � � � ; x�T

� � 2 RD�T with another loss sequence ‘�1 ; ‘
�
2 ; � � � ; ‘�T

� �
. We enforce the prediction in each step to be consis-

tent in both directions by using the distance between the forward direction and the backward direction:
‘dij ¼ kx�j � xþj k2: ð20Þ

The final estimation loss term for HR estimation is obtained by accumulating the forward loss ‘þ, the backward loss ‘�,

and the distance loss ‘di over T time windows. Thus, the RGRU-D aims to minimize the accumulated loss for each data point:PT
j¼1‘j, where ‘j ¼ kxþj � xjk2 þ kx�j � xjk2 þ k‘dij � xjk2 þ kqj � xjk2.

5.5. The constraint operation

Constraint operation allows the use of hand-engineered rules to constrain the imputed values. For example, common
sense dictates that the heart rate must be between 0 and 300. Here, a prelearned feature probability distribution is used
to constrain the imputed values. In this work, we use a prelearned sampling probability distribution, which is also based
on clinical action-based facts, to constrain the imputed data, as the statistical patterns derived from the population data
are very helpful when constraining the imputed values [47]. Therefore, population-based feature distribution patterns are
efficient in constraining the imputed features. Inspired by Joseph et al., we use the three most common distributions: bino-
mial, normal, and Poisson. In addition, we also use the maximum and minimum values to further constrain the imputation
results.

After the constraint operation, the initial imputed values bXp
i;j can be updated with the output results X

�
p
i;j.
bXp
i;j �X

�
p
i;j; ð21Þ
where X
�
p
i;j is the imputed value after the constraint operation.

5.6. Mortality prediction

To predict the mortality of ICU patients, we adopt the cross-entropy loss with L2 regularization as the loss function for
binary classification. To solve the data imbalance problem, we add a weighting parameter to penalize mistakes in the minor-
ity class. More specifically, errors relative to class k k 2 1; . . . ;Kf gð Þ are weighted by the term ck ¼ 1� Nk=N, where Nk is the
number of training samples of class k and N is the size of the training set. In this way, classification errors in the class with
fewer elements contribute more than errors in the other class. The resulting loss function is:
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L ¼ � 1
N

XK
k¼1

XNk

i¼1
ck yki log ŷki

� �þ 1� yki
� �

log 1� ŷki
� �	 
þ kkWk2; ð22Þ
where yki and ŷki are the ground truth and prediction, respectively, for the k-th class. Notably, there are only two classes in
mortality prediction, and the class distribution is usually imbalanced. In other words, there are much fewer positive obser-
vations (i.e., death records) than negative observations. kWk2 is the L2 norm of all the network weights, and k weights the
regularization strength.

6. Experiment

6.1. Dataset and experiment settings

We conducted our experiments on the MIMIC-III real-world ICU dataset containing data on four different diseases. MIMIC
is a publicly available dataset containing deidentified health data associated with more than 40,000 critical care patients and
approximately 60,000 ICU stays.

We first categorized the ICU stays based on codes from the 9th version of the International Classification of Diseases
(ICD9) [48]. We then chose the four most commonly diagnosed diseases: hypertension (ICD: 4019), coronary atherosclerosis
(ICD: 41401), renal failure (ICD: 5849), and diabetes mellitus (ICD: 25000). For each disease, we counted the clinical mea-
surement features, and the medical treatment features were treated in descending order. We selected the top 300 f measure

and top 200 f treat for inclusion in the data. Next, we randomly hid 5%, 10%, 15%, 20%, 30% of the observed values as the ground
truth. We trained our model with an Adam optimizer at a learning rate of 0.001 and a batch size of 400. We also imple-
mented an early stopping strategy given a validation error. We used the pretrained model from Step 1 for the classification
step, followed by 10-fold cross-validation to further optimize both the imputation and classification losses simultaneously.

6.2. Baseline methods

To test the imputation step, we compared M4IP with both RNN-based methods and non-RNN-based methods. 1) Sample
mean: replace the missing values with the corresponding sample mean; 2) KNN: imputes missing values using the KNN algo-
rithm [49]; 3) MF: factorizes the data matrix into two low-rank matrices and fills in the missing values using matrix com-
pletion [26]; 4) LO: replaces a missing value with the last observation (and, for simplicity, 0 if no previous observation exists,
which is a common situation in ICU data); 5) MICE: we use a method named Pandas-MICE, which is the Python version of
MICE [8]; 6) GRU-D: we use a reimplementation of Zhenpin Che et al.’s work [12], which employs an RNN for multivariate
time series with missing values; 7) BRITS: we use a standard implementation of BRITS [1].

To evaluate the predictions, we replaced our imputation method with the baseline methods and then integrated them
into the second step. This approach meant that we could compare all the methods under the same experimental settings.

GRU-D, BRITS, and M4IP were implemented using PyTorch with two GTX 2080 Ti GPUs.

6.3. Evaluation metrics

We used two metrics to assess the imputation results: the mean absolute error (MAE) and mean relative error (MRE),
defined as follows:
MAE ¼
P

i
~yi � yij j
N

ð23Þ

MRE ¼
P

i
~yi � yij jP
i yij j

; ð24Þ
where ~yi is the imputed value, yi is the ground truth of the i-th item, and N is the total number of imputed items. We used
three metrics to evaluate the performance of the mortality prediction: accuracy (ACC), precision, and area under the
precision-recall curve (AUPRC).

6.4. Experimental results and discussion

6.4.1. Imputation results
Tables 2 and 3 show the imputation performance. From these tables, we can see that the same methods perform differ-

ently on different tasks, e.g., tasks 41401 and 5849, where the MAE has a more than seven-point difference. This finding indi-
cates that these methods greatly depend on the amount and quality of the input data. The mean imputation method had
lower average values but higher variance among all the patients. The lower mean values indicate that the majority of the
features of the patient are regular most of the time. A higher standard deviation indicates that the method is not suitable
for uneven values, which frequently occur in ICU data, and this also indicates that adding a burst pattern is useful. The fea-
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Table 2
Performance comparison for the imputation tasks – mean absolute error (MAE).

Category Method 4019 41401 5849 25000

Non-RNN LO 16.08 ± 74.96 22.61 ± 116.82 15.06 ± 27.42 16.45 ± 18.40
Mean 8.62 ± 145.80 8.87 ± 123.54 9.76 ± 311.62 9.90 ± 77.00
KNN 23.03 ± 32.87 25.72 ± 19.25 17.24 ± 60.24 14.29 ± 6.83
MICE 19.76 ± 61.97 23.61 ± 21.13 14.96 ± 13.36 13.07 ± 6.07
MF 18.75 ± 27.87 23.38 ± 7.23 14.72 ± 27.69 13.00 ± 7.21

RNN BRITS 17.09 ± 6.21 21.62 ± 9.40 11.36 ± 8.36 12.05 ± 18.60
GRU-D 16.54 ± 7.32 20.55 ± 8.74 9.62 ± 7.29 11.05 ± 11.85

Ours M4IP 8.73 ± 6.68 8.73 ± 6.68 6.13 ± 4.32 8.29 ± 5.88

Table 3
Performance comparison for the imputation tasks – mean relative error (MRE).

Category Method 4019 41401 5849 25000

Non-RNN LO 0.35 ± 0.44 0.31 ± 0.70 0.42 ± 0.21 0.29 ± 0.45
Mean 0.18 ± 0.69 0.18 ± 0.63 0.19 ± 0.69 0.19 ± 0.69
KNN 0.39 ± 0.34 0.38 ± 0.43 0.59 ± 0.42 0.29 ± 0.37
MICE 0.33 ± 0.40 0.36 ± 0.36 0.40 ± 0.24 0.37 ± 0.24
MF 0.33 ± 0.30 0.36 ± 0.20 0.40 ± 0.18 0.37 ± 0.34

RNN BRITS 0.33 ± 0.16 0.38 ± 0.19 0.35 ± 0.16 0.32 ± 0.37
GRU-D 0.32 ± 0.21 0.37 ± 0.17 0.31 ± 0.12 0.29 ± 0.24

Ours M4IP 0.16 ± 0.15 0.16 ± 0.15 0.12 ± 0.08 0.17 ± 0.14
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ture matrix method performed consistently with the low-rank and sparse hypotheses due to the high rate of missing values,
while the MF method showed favorable results. We used k ¼ 2;3;4;5;6;8;10 for the KNN method and found that the major-
ity of its best performances occurred at k ¼ 3 or k ¼ 4, which indicates that clinical features are highly correlated with the
sequence. From Table 2, we can see that BRITS performed the worst among the three RNN-based methods. This is because
BRITS performs poorly when contending with irregular time sequences. GRU-D was designed for health records and adopted
a bidirectional RNN, so it performed second best in terms of MAE and MRE. We attempted to impute all the tasks together,
but this resulted in the worst performance, indicating that a refined imputation is necessary, such as categorization by
disease.

For the imputation evaluation, M4IP achieved the best performance measured by the MAE compared to all the imputation
methods. From Table 2, regarding task 4019, the averaged imputation performance of our proposed method is close to that of
the mean imputation strategy (M4IP: 8.7338, mean: 8.6214), but the standard deviation of the proposed method is much
lower than that of the mean strategy (6.6767 vs 145.7971). Compared to the second-best RNN-based method, GRU-D, our
imputation consistently outperforms the other strategies in all tasks. Additionally, we observed a similar performance
improvement in Table 3, where the imputation quality is measured by the MRE. Notably, our method can achieve the best
performance in terms of the MRE in all the different prediction tasks.
6.4.2. Mortality prediction results
As shown in Table 4, our method, M4IP, has achieved the best performance in terms of accuracy, precision, and F1 scores

for four different prediction tasks. This indicates that M4IP is effective when addressing the mortality prediction problem.
Table 4
Performance Comparison for Mortality Prediction using M4IP.

Task Metric LO Mean KNN MICE MF GRU-D BRITS M4IP

4019 ACC 0.8031 0.7973 0.7892 0.8112 0.8201 0.8669 0.8352 0.9402
AUROC 0.7215 0.7282 0.7043 0.7390 0.7389 0.7702 0.7509 0.8746
AUPRC 0.8557 0.8590 0.8331 0.8609 0.8621 0.9254 0.9184 0.9763

41401 ACC 0.8857 0.8944 0.8642 0.8867 0.8871 0.9402 0.9000 0.9421
AUROC 0.7387 0.7831 0.7701 0.7961 0.7923 0.7991 0.7749 0.8051
AUPRC 0.8881 0.9599 0.8923 0.9320 0.9358 0.9670 0.9591 0.9764

5849 ACC 0.8114 0.7602 0.8227 0.8205 0.8223 0.8894 0.8433 0.9378
AUROC 0.8224 0.8152 0.8014 0.8200 0.8192 0.8690 0.8200 0.8761
AUPRC 0.8766 0.8925 0.9079 0.9192 0.9212 0.9438 0.9352 0.9741

25000 ACC 0.8601 0.7635 0.8717 0.8777 0.8770 0.8976 0.8600 0.9227
AUROC 0.8000 0.8107 0.7924 0.8067 0.8092 0.8100 0.7913 0.8204
AUPRC 0.9242 0.9463 0.9301 0.9502 0.9414 0.9633 0.9510 0.9646
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The mortality rate is very different among all of these tasks, which means that the class distribution of the dataset is imbal-
anced. GRU-D, BRITS, and M4IP achieved better performance than the other methods in terms of the recall measure, demon-
strating that RNN-based methods are better at finding positive samples.

Similarly, M4IP also achieved the best AUROC performance in all the tasks, which shows that the proposed method is
superior to all the compared methods.

From Table 2 and Table 4, we can obtain two observations: 1). more complicated imputation strategies normally yield
better prediction results; 2). RNN-based methods often outperform non-RNN-based methods in prediction tasks. For exam-
ple, GRU-D, BRITS, and M4IP have been demonstrated to be better imputation strategies (low error in Table 2 compared to
LO, mean, MICE, and MF). Meanwhile, their performance is usually better than the performance of non-RNN-based methods.
In addition, unlike previous works [12,1], we did not filter any patients in our experiments, and the length of the sequence
was dynamic. Thus, M4IP is more flexible and applicable to medical data analysis, where imputation quality control is
indispensable.
6.5. Performance comparison

To evaluate the imputation performance between our method and the existing baselines more comprehensively, we con-
ducted a statistical analysis for the imputation results. We first calculated the absolute error (AE) for each imputed value
with its corresponding ground truth, and then we performed a statistical analysis for all these values. The results are shown
in Table 5. From the results, we can observe the following: 1) Our proposed method achieves the best performance on all
datasets. This is reflected by the 25%, 50%, 75%, and maximum AE values, which are much smaller than the corresponding
imputed values from the baselines. 2) The imputation quality of the RNN-based methods is better than that of the
location-based methods (LO, Mean, KNN, MICE), which is reflected in the maximum absolute value. This outcome occurs
Table 5
Imputation Quality Comparison on Various Imputation Methods.

Task Method @25%1 @50%1 @75%1 Max1 PCC2 P3 Improvement4

4019 LO 24.47 51.67 88.14 2500 0.7 6.24E�64 84.19%
Mean 4.68 9.95 16.78 598.77 0.71 7.14E�01 1.26%
KNN 13.14 28.04 47.05 162.92 0.62 4.63E�181 163.80%
MICE 20.87 44.01 75.2 252.23 0.64 7.08E�196 126.35%
MF 11.08 23.55 39.45 117.56 0.67 8.71E�15 114.78%
BRITS 12.9 17.07 21.24 42.62 0.77 8.51E�01 95.76%
GRU-D 11.62 16.51 21.45 48.02 0.82 6.48E�16 89.46%
M4IP 4.62 8.8 13.23 38.46 0.84 —— ——

41401 LO 37.82 80.1 137.07 2500 0.7 2.20E�88 158.99%
Mean 3.99 8.37 14.22 476.45 0.72 4.45E�01 1.60%
KNN 13.86 25.93 38.71 104.99 0.61 9.60E�03 194.62%
MICE 12.27 24.02 38.03 108.78 0.64 6.48E�16 170.45%
MF 18.48 23.38 28.3 51.49 0.67 9.97E�66 167.81%
BRITS 15.29 21.61 27.96 59.47 0.8 5.71E�02 147.65%
GRU-D 14.6 20.53 26.43 58.72 0.83 1.11E�15 135.40%
M4IP 4.67 8.83 13.25 36.13 0.84 —— ——

5849 LO 10.24 21.52 36.01 2500 0.71 4.81E�57 145.68%
Mean 9.82 20.84 35.99 1290.77 0.73 4.42E�01 59.22%
KNN 20 42.27 71.83 247.61 0.62 1.22E�127 181.24%
MICE 7.75 15.49 24.12 67.26 0.66 1.11E�15 144.05%
MF 9.95 21.54 36.44 137.96 0.68 2.61E�294 140.13%
BRITS 6.14 11.45 16.98 45.32 0.81 6.57E�04 85.32%
GRU-D 5.2 9.68 14.55 35.63 0.83 1.87E�118 56.93%
M4IP 3.39 6.17 9.05 25.7 0.85 —— ——

25000 LO 8.66 18.15 29.31 2500 0.71 3.61E�83 98.43%
Mean 2.46 5.25 8.94 329.95 0.77 6.57E�04 19.42%
KNN 9.7 14.27 18.86 41.56 0.63 2.52E�195 72.38%
MICE 8.99 13.08 17.18 36.48 0.67 9.88E�163 57.66%
MF 8.26 13.03 17.86 41.23 0.7 8.99E�01 56.82%
BRITS 7.23 15.31 25.76 106.09 0.82 2.60E�214 45.36%
GRU-D 5.78 11.87 19.15 68.36 0.83 9.37E�251 33.29%
M4IP 4.63 8.35 12.29 33.23 0.85 —— ——

1 @25%, @50%, @57%, Max: the distribution of all imputed values in terms of AE.
2 PCC: Pearson correlation coefficient, indicating the correlations between imputed values and the corresponding ground truth.
3 P: P-value of an imputation T-test with a ¼ 0:05.
4 Imp/rovement: Imputation improvement between M4IP and the current-row method in terms of AE.

619



Table 6
Ablation study results of each component in M4IP.

Task Metric No-neaten No-recurrent No-estimate No-constraint Full

4019 MAE 9.56 ± 26.42 11.62 ± 56.80 10.96 ± 22.88 8.73 ± 6.79 8.73 ± 6.68
MRE 0.18 ± 0.21 0.18 ± 0.39 0.18 ± 0.26 0.16 ± 0.16 0.16 ± 0.15
MACC 0.8128 0.8257 0.8530 0. 9401 0.9402

41401 MAE 8.73 ± 28.09 9.34 ± 23.43 9.17 ± 12.01 8.73 ± 6.71 8.73 ± 6.68
MRE 0.16 ± 0.17 0.18 ± 0.40 0.18 ± 0.16 0.16 ± 0.15 0.16 ± 0.15
MACC 0.8475 0.8622 0.9127 0.9421 0.9421

5849 MAE 8.24 ± 9.06 9.46 ± 102.62 6.83 ± 24.05 6.13 ± 4.90 6.13 ± 4.32
MRE 0.13 ± 0.12 0.19 ± 0.51 0.12 ± 0.14 0.12 ± 0.10 0.12 ± 0.08
MACC 0.8544 0.8068 0.9077 0.9376 0.9378

2500 MAE 8.89 ± 21.23 12.19 ± 8.47 8.73 ± 12.40 8.29 ± 6.03 8.29 ± 5.88
MRE 0.17 ± 0.44 0.19 ± 0.50 0.18 ± 0.19 0.17 ± 0.15 0.17 ± 0.14
MACC 0.9094 0.8786 0.8870 0.9218 0.9227

No-neaten: eliminate the neaten layer. No-recurrent: eliminate the imputation recurrent layer. No-estimate: eliminate the estimated layer. No-constraint:
eliminate the constraint layer. FULL: full DIMM framework. MACC: accuracy of mortality prediction.
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mainly because the charting values when an ICU patient is in a normal state and those when the patient is in a serious state
can be very different; the location-based methods cannot capture the change state instantaneously.

Then, we computed the Pearson correlation of the imputed values with the ground truth for the imputation methods. The
Strength of Association (SoA) standard we used was 0.0–0.2 no, 0.2–0.4 weak, 0.4–0.6 medium, 0.6–0.8 large, and 0.8–1.0
strong. From Table 5, we can see that all the imputed values have large correlations with the ground truth and that the
imputed values from M4IP have the strongest correlations.

Next, we compared the AE value (the lower, the better) between M4IP and other baselines. As shown in Table 5 (improve-
ment), our method got 1.26%–63.8%, 1.6%–194.62%, 59.22%–181.24%, 19.42%–98.43%, improvement for task 4019, 41401,
5849, 25000, respectively. Besides, we calculated the improvement of MAE, MRE, and downstream classification accuracy.
For MAE, 49.09% improvement in terms of mean, 84.20% improvement in terms of variance. For MRE, 53.55% improvement
in terms of mean, 63.87% improvement in terms of variance. For classification accuracy, improved 10.42%.

Finally, to verify whether M4IP is a significant advancement compared with the baselines, we conducted a hypothesis test
(T-test), with a ¼ 0:05 and H0: no significant difference. The test results are shown in Table 5. From the results, we can see
that all the p-values are smaller than a; thus, the hypothesis is rejected. Therefore, in the ICU missing value imputation sce-
nario, our proposed M4IP is significantly better than the compared baseline methods.
6.5.1. Ablation study
To demonstrate the consistency of the proposed method, we conducted an ablation study in this section. The details are

listed in Table 6. From the table, we find that the mean MAE and MRE are similar to those of the full M4IP, while the variance
greatly increases when eliminating the neaten layer. This result occurs mainly because the neaten layer can facilitate the
process of finding better initial imputation values. For the recurrent layer, when we destroy it, the imputation performance
greatly decreases. This suggests that the recurrent layer is the main component in M4IP, providing the main driving force
behind the missing value imputation. If we remove the estimated layer, compared to those of the full M4IP, both the mean
and variance of the MAE increase (main: +5.30%, variance: +110.88%). This proves that adopting an FR estimation and an HR
estimation is necessary. While the constraint layer provides less support in terms of the mean value of the MAE and MRE, it
can help decrease the variance by approximately 1.65%. We can deduce from the table that each component in M4IP is
necessary.
7. Conclusions

In this work, we proposed a novel 2-step model to address imputation problems in clinical prediction tasks. In the first
step of M4IP, four factors, i.e., masking, time interval, bursty, and cumulative, are considered. In the second step, the imputed
values are optimized through additional layers with the aim of exploiting clinical patterns and constraining the imputed val-
ues. To the best of our knowledge, M4IP is the first framework to consider the imputation quality when handling irregularly
sampled, missing, or noisy data, which are common data quality issues in medical applications. The experimental results
demonstrated that M4IP outperforms state-of-the-art methods in terms of both the imputation quality and classification
performance. However, although our model achieves state-of-the-art performance on missing value imputation for ICU data,
there is still much that can be done to boost the performance from a clinical perspective, such as domain knowledge-based
imputation. Our future work will focus on this topic.
620



Z. Shi, S. Wang, L. Yue et al. Information Sciences 579 (2021) 607–622
CRediT authorship contribution statement

Zhenkun Shi: Conceptualization Methodology and Writing original. Sen Wang: Conceptualization and Investigation. Lin
Yue: Writing – review & editing. Xianglin Zuo: Investigation, and Validation. Lixin Pang: Writing – review & editing. Wanli
Zuo: supervision. Xue Li: Supervision. All authors analyzed the results and revised the paper.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the Tianjin Synthetic Biotechnology Innovation Capability Improvement Program (No.
TSBICIP-CXRC-018), the Nature Science Foundation of Jilin Province (Nos. 20180101330JC and 20190302029GX), and the Sci-
entific and Technological Development Program of Jilin Province (Nos. 20180520022JH and 20190302109GX). The authors
also gratefully acknowledge the financial support from the China Scholarship Council (No. 201706170617).

References

[1] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, Y. Li, Brits: Bidirectional recurrent imputation for time series, in: Advances in Neural Information Processing
Systems, 2018, pp. 6776–6786.

[2] H. Kang, The prevention and handling of the missing data, Kor. J. Anesthesiol. 64 (5) (2013) 402.
[3] A. Sharafoddini, J.A. Dubin, D.M. Maslove, J. Lee, A new insight into missing data in intensive care unit patient profiles: Observational study, JMIR Med.

Inform. 7 (1) (2019).
[4] W.-C. Lin, C.-F. Tsai, Missing value imputation: a review and analysis of the literature (2006–2017), Artif. Intell. Rev. 53 (2) (2020) 1487–1509.
[5] S. Armijo-Olivo, S. Warren, D. Magee, Intention to treat analysis, compliance, drop-outs and how to deal with missing data in clinical research: a

review, Phys. Therapy Rev. 14 (1) (2009) 36–49, https://doi.org/10.1179/174328809x405928.
[6] H.-F. Yu, N. Rao, I. S. Dhillon, Temporal regularized matrix factorization for high-dimensional time series prediction, in: Advances in neural information

processing systems, 2016, pp. 847–855.
[7] Z. Shi, W. Zuo, W. Chen, L. Yue, J. Han, L. Feng, User relation prediction based on matrix factorization and hybrid particle swarm optimization, in:

Proceedings of the 26th International Conference on World Wide Web Companion, 2017, pp. 1335–1341.
[8] Z. Zhang, Multiple imputation with multivariate imputation by chained equation (mice) package, Ann. Transl. Med. 4 (2) (2016).
[9] D.M. Kreindler, C.J. Lumsden, The effects of the irregular sample and missing data in time series analysis, in: Nonlinear Dynamical Systems Analysis for

the Behavioral Sciences Using Real Data, CRC Press, 2016, pp. 149–172.
[10] M. Soley-Bori, Dealing with missing data: Key assumptions and methods for applied analysis, Boston University, 2013.
[11] L. Bonomi, X. Jiang, A mortality study for icu patients using bursty medical events, in: 2017 IEEE 33rd International Conference on Data Engineering

(ICDE), IEEE, 2017, pp. 1533–1540.
[12] Z. Che, S. Purushotham, K. Cho, D. Sontag, Y. Liu, Recurrent neural networks for multivariate time series with missing values, Sci. Rep. 8 (1) (2018) 6085.
[13] N. Liu, P. Lu, W. Zhang, J. Wang, Knowledge-aware deep dual networks for text-based mortality prediction, in: 2019 IEEE 35th International Conference

on Data Engineering (ICDE), IEEE, 2019, pp. 1406–1417.
[14] Q. Ma, Y. Gu, W.-C. Lee, G. Yu, H. Liu, X. Wu, Remian: Real-time and error-tolerant missing value imputation, ACM Trans. Knowl. Discov. Data (TKDD)

14 (6) (2020) 1–38.
[15] G. Harari, M.S. Green, S. Zelber-Sagi, Estimation and development of 10-and 20-year cardiovascular mortality risk models in an industrial male workers

database, Prevent. Med. 103 (2017) 26–32.
[16] A.E. Johnson, T.J. Pollard, L. Shen, H.L. Li-wei, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L.A. Celi, R.G. Mark, Mimic-iii, a freely accessible critical care

database, Sci. Data 3 (2016) 160035.
[17] X. Zhu, S. Zhang, Z. Jin, Z. Zhang, Z. Xu, Missing value estimation for mixed-attribute data sets, IEEE Trans. Knowl. Data Eng. 23 (1) (2010) 110–121.
[18] A. Vesin, E. Azoulay, S. Ruckly, L. Vignoud, K. Rusinovà, D. Benoit, M. Soares, P. Azeivedo-Maia, F. Abroug, J. Benbenishty, et al, Reporting and handling

missing values in clinical studies in intensive care units, Intensive care Med. 39 (8) (2013) 1396–1404.
[19] L. Zhang, Y. Zhao, Z. Zhu, D. Shen, S. Ji, Multi-view missing data completion, IEEE Trans. Knowl. Data Eng. 30 (7) (2018) 1296–1309.
[20] W. Zhang, T. Luo, S. Qiu, J. Ye, D. Cai, X. He, J. Wang, Identifying genetic risk factors for alzheimer’s disease via shared tree-guided feature learning

across multiple tasks, IEEE Trans. Knowl. Data Eng. 30 (11) (2018) 2145–2156.
[21] S. Van Buuren, Flexible imputation of missing data, Chapman and Hall/CRC, 2018.
[22] I.B. Aydilek, A. Arslan, A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic

algorithm, Inf. Sci. 233 (2013) 25–35.
[23] H. Verma, S. Kumar, An accurate missing data prediction method using lstm based deep learning for health care, in: Proceedings of the 20th

International Conference on Distributed Computing and Networking, ACM, 2019, pp. 371–376.
[24] J. Yoon, W.R. Zame, M. van der Schaar, Estimating missing data in temporal data streams using multi-directional recurrent neural networks, IEEE Trans.

Biomed. Eng. (2018).
[25] D. Mondal, D.B. Percival, Wavelet variance analysis for gappy time series, Ann. Inst. Stat. Math. 62 (5) (2010) 943–966.
[26] J. Tan, W. Liu, T. Wang, N. N. Xiong, H. Song, A. Liu, Z. Zeng, An adaptive collection scheme-based matrix completion for data gathering in energy-

harvesting wireless sensor networks, IEEE Access (2019).
[27] Y. Chi, Y.M. Lu, Y. Chen, Nonconvex optimization meets low-rank matrix factorization: An overview, IEEE Trans. Signal Process. 67 (20) (2019) 5239–

5269.
[28] M. Liu, L. Nie, X. Wang, Q. Tian, B. Chen, Online data organizer: micro-video categorization by structure-guided multimodal dictionary learning, IEEE

Trans. Image Process. 28 (3) (2018) 1235–1247.
[29] X. Lin, P.C. Boutros, Optimization and expansion of non-negative matrix factorization, BMC Bioinf. 21 (1) (2020) 1–10.
[30] M.J. Azur, E.A. Stuart, C. Frangakis, P.J. Leaf, Multiple imputation by chained equations: what is it and how does it work?, Int J. Methods Psychiat. Res. 20

(1) (2011) 40–49.
[31] Z. C. Lipton, D. Kale, R. Wetzel, Directly modeling missing data in sequences with rnns: Improved classification of clinical time series, in: F. Doshi-Velez,

J. Fackler, D. Kale, B. Wallace, J. Wiens (Eds.), Proceedings of the 1st Machine Learning for Healthcare Conference, Vol. 56 of Proceedings of Machine
Learning Research, PMLR, Children’s Hospital LA, Los Angeles, CA, USA, 2016, pp. 253–270. URL http://proceedings.mlr.press/v56/Lipton16.html.
621

http://refhub.elsevier.com/S0020-0255(21)00816-1/h0010
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0015
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0015
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0020
https://doi.org/10.1179/174328809x405928
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0035
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0035
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0035
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0040
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0045
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0045
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0045
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0050
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0050
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0055
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0055
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0055
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0060
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0065
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0065
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0065
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0070
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0070
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0075
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0075
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0080
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0080
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0085
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0090
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0090
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0095
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0100
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0100
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0105
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0105
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0110
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0110
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0115
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0115
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0115
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0120
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0120
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0125
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0135
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0135
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0140
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0140
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0145
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0150
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0150


Z. Shi, S. Wang, L. Yue et al. Information Sciences 579 (2021) 607–622
[32] B. Liu, Y. Li, S. Ghosh, Z. Sun, K. Ng, J. Hu, Complication risk profiling in diabetes care: A bayesian multi-task and feature relationship learning approach,
IEEE Trans. Knowl. Data Eng. (2019).

[33] Z. Shi, W. Zuo, S. Liang, X. Zuo, L. Yue, X. Li, Iddsam: an integrated disease diagnosis and severity assessment model for intensive care units, IEEE Access
8 (2020) 15423–15435.

[34] Z. Shi, W. Zuo, W. Chen, L. Yue, Y. Hao, S. Liang, Dmmam: Deep multi-source multi-task attention model for intensive care unit diagnosis, in:
International Conference on Database Systems for Advanced Applications, Springer, 2019, pp. 53–69.

[35] W.A. Knaus, D.P. Wagner, E.A. Draper, J.E. Zimmerman, M. Bergner, P.G. Bastos, C.A. Sirio, D.J. Murphy, T. Lotring, A. Damiano, et al, The apache iii
prognostic system: risk prediction of hospital mortality for critically iii hospitalized adults, Chest 100 (6) (1991) 1619–1636.

[36] J.-L. Vincent, R. Moreno, J. Takala, S. Willatts, A. De Mendonça, H. Bruining, C. Reinhart, P. Suter, L. Thijs, The sofa (sepsis-related organ failure
assessment) score to describe organ dysfunction/failure, Intensive care Med. 22 (7) (1996) 707–710.

[37] R.P. Moreno, P.G. Metnitz, E. Almeida, B. Jordan, P. Bauer, R.A. Campos, G. Iapichino, D. Edbrooke, M. Capuzzo, J.-R. Le Gall, et al, Saps 3—from evaluation
of the patient to evaluation of the intensive care unit. part 2: Development of a prognostic model for hospital mortality at icu admission, Intensive care
Med. 31 (10) (2005) 1345–1355.

[38] G.C. Siontis, I. Tzoulaki, J.P. Ioannidis, Predicting death: an empirical evaluation of predictive tools for mortality, Arch. Internal Med. 171 (19) (2011)
1721–1726.

[39] A. Rajkomar, E. Oren, K. Chen, A.M. Dai, N. Hajaj, M. Hardt, P.J. Liu, X. Liu, J. Marcus, M. Sun, et al, Scalable and accurate deep learning with electronic
health records, npj Digital Med. 1 (1) (2018) 18.

[40] H. Song, D. Rajan, J. Thiagarajan, A. Spanias, Attend and diagnose: Clinical time series analysis using attention models, in: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32, 2018, pp. 1–8.

[41] L. Zhou, G. Hripcsak, Temporal reasoning with medical data—a review with emphasis on medical natural language processing, J. Biomed. Inf. 40 (2)
(2007) 183–202.

[42] K.-I. Goh, A.-L. Barabási, Burstiness and memory in complex systems, EPL (Europhys. Lett.) 81 (4) (2008) 48002.
[43] Y. Wang, R. Chen, J. Ghosh, J. C. Denny, A. Kho, Y. Chen, B. A. Malin, J. Sun, Rubik: Knowledge guided tensor factorization and completion for health data

analytics, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2015, pp. 1265–1274.
[44] A. Milewski, K.L. Ferguson, T.E. Terndrup, Comparison of pulmonary artery, rectal, and tympanic membrane temperatures in adult intensive care unit

patients, Clin. Pediat. 30 (4_suppl) (1991) 13–16.
[45] D. Chemla, V. Castelain, M. Humbert, J.-L. Hébert, G. Simonneau, Y. Lecarpentier, P. Hervé, New formula for predicting mean pulmonary artery pressure

using systolic pulmonary artery pressure, Chest 126 (4) (2004) 1313–1317.
[46] Y. Vodovotz, G. An, I.P. Androulakis, A systems engineering perspective on homeostasis and disease, Front. Bioeng. Biotechnol. 1 (2013) 6.
[47] L. Joseph, C. Reinhold, Introduction to probability theory and sampling distributions, Amer. J. Roentgenol. 180 (4) (2003) 917–923.
[48] S. Wang, X. Li, L. Yao, Q.Z. Sheng, G. Long, et al, Learning multiple diagnosis codes for icu patients with local disease correlation mining, ACM Trans.

Knowl. Discov. Data (TKDD) 11 (3) (2017) 31.
[49] S. Zhang, Nearest neighbor selection for iteratively knn imputation, J. Syst. Softw. 85 (11) (2012) 2541–2552.
622

http://refhub.elsevier.com/S0020-0255(21)00816-1/h0160
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0160
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0165
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0165
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0175
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0175
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0180
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0180
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0185
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0185
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0185
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0190
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0190
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0195
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0195
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0205
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0205
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0210
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0220
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0220
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0225
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0225
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0230
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0235
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0240
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0240
http://refhub.elsevier.com/S0020-0255(21)00816-1/h0245

	Deep dynamic imputation of clinical time series for mortality prediction
	1 Introduction
	2 Related work
	2.1 Clinical missing value imputations
	2.2 Mortality prediction

	3 Preliminaries
	3.1 Key concept definitions

	4 Problem description
	5 Proposed approach
	5.1 The input layer
	5.2 The neaten layer
	5.3 The recurrent and regression layers
	5.4 The estimated layer
	5.5 The constraint operation
	5.6 Mortality prediction

	6 Experiment
	6.1 Dataset and experiment settings
	6.2 Baseline methods
	6.3 Evaluation metrics
	6.4 Experimental results and discussion
	6.4.1 Imputation results
	6.4.2 Mortality prediction results

	6.5 Performance comparison
	6.5.1 Ablation study


	7 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


