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Mining causality from text is a complex and crucial natural language understanding task corresponding
to human cognition. Existing studies on this subject can be divided into two categories: feature
engineering-based and neural model-based methods. In this paper, we find that the former has incom-
plete coverage and intrinsic errors but provides prior knowledge, whereas the latter leverages context
information but has insufficient causal inference. To address the limitations, we propose a novel causality
detection model named MCDN, which explicitly models the causal reasoning process, and exploits the
advantages of both methods. Specifically, we adopt multi-head self-attention to acquire semantic fea-
tures at the word level and develop the SCRN to infer causality at the segment level. To the best of our
knowledge, this is the first time the Relation Network is applied with regard to the causality tasks. The
experimental results demonstrate that: i) the proposed method outperforms the strong baselines on
causality detection; ii) further analysis manifests the effectiveness and robustness of MCDN.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Automatic text causality mining is an important yet challenging
task because causality is believed to be critical in human cognition
whenmaking decisions [1]. Thus, automatic text causality has been
extensively investigated in a variety of areas, such as medical [2],
question answering [3] and event prediction [4], etc. A tool auto-
matically extracts meaningful causal relations could help us con-
struct causality graphs [5] to unveil previously undiscovered
relationships between events and accelerate the discovery of the
events’ intrinsic logic [6].

Many research efforts have been made to mine causality from
text corpora with complex sentence structures in books or news-
papers [7–9]. However, the scale of textual data in the world, for
example, on the web, is much larger than that in books and news-
papers. Despite the success of prior studies on extracting explicit
causality, the majority cannot be transferred directly to causality
mining on the web text, which has a substantial number of implicit
causality examples. First, most public available causality mining
datasets are derived from books and newspapers. Their language
expressions are typically formal but lack diversity than the web
text. Second, the existing works mainly focus on explicit causal
relations expressed by intra-sentence or inter-sentence connec-
tives, omitting ambiguous and implicit instances. As is generally
known, implicit causality always has a simple sentence structure
without any connectives as below. In Example 1, ‘‘got wet” is the
cause of ‘‘fever” and there are no connectives available for infer-
ence. Contrastively in Example 2, there are explicit connectives
(i.e. ‘‘since” and ‘‘result”) benefiting the causality detection.

� Example 1: I got wet during the day and came home with a fever
at night.

� Example 2: Since computers merely execute the instructions
they are given, bugs are nearly always the result of programmer
error or an oversight made in the program’s design.

As a result, it would make the recognition of causality incom-
plete if we ignore those implicit ones. There is an enormous
demand to investigate an approach for mining both explicit and
implicit causality from the web text.

In this paper, we formulate causality mining as two sub-
sequential tasks: causality detection [4,10,11] and cause-effect pair
extraction [12,13], which are also investigated in SemEval-2020
Task5 [14] and FinCausal 2020 [15]. When dealing with large-
scale web text, detecting causalities is a prerequisite system before
extracting cause-effect pairs. It could contribute to building a

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.01.076&domain=pdf
https://doi.org/10.1016/j.neucom.2022.01.076
mailto:shizk14@mails.jlu.edu.cn
https://doi.org/10.1016/j.neucom.2022.01.076
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


S. Liang, W. Zuo, Z. Shi et al. Neurocomputing 481 (2022) 121–132
high-quality corpus with diverse linguistic characteristics for cau-
sal pairs extraction, resulting in reduced annotation cost and
model complexity for downstream tasks. In recent years, Hidey
and McKeown [10] utilize the ‘‘AltLex” (i.e. Alternative lexicaliza-
tion in the Penn Discourse Tree Bank) to build a large open-
domain causality detection dataset based on parallel Wikipedia
articles, therefore extending the scale of AltLex as shown in Table 1.
Most existing works on the causality detection task falls into two
categories: i) feature engineering-based methods, widely apply lin-
guistic features (part-of-speech (POS) tagging, dependency pars-
ing) [4,10] and statistic features (template, co-occurrence) [11].
There are thousands of AltLexes, some of which may appear as
‘‘consequently” in Table 1 in both causal and non-causal examples.
However, the complicated features hardly capture the subtle dis-
crepancies between various causality expressions, and the inherent
errors of natural language processing (NLP) tools will be accumu-
lated and propagated; ii) neural model-based methods, which have
achieved notable results with the end-to-end paradigm, are preva-
lent in terms of design and usage. We conduct an empirical study
to assess the application of neural text classifiers on causality
detection. The performance of most neural model-based methods
falls behind feature engineering-based methods (in Table 3). The
explanation is encapsulated as they mainly focus on the interac-
tions of the words and treat the sentence as a whole, but do not
make explicit inferences about causality within sentences.
Recently, pre-trained language models (PLMs) [16,17] develop dra-
matically and even surpass human performance on a variety of NLP
tasks. Nonetheless, when dealing with large-scale web text data,
the memory and time consumption is quite considerable.

Faced with the aforementioned problems, we propose the
Multi-level Causality Detection Network (MCDN) for causality
detection in web texts based on the following observations: i) neu-
ral network-based methods can reduce the labor cost and inherent
errors of feature engineering-based methods while combining the
prior knowledge of the latter benefits the former [18]; ii) causality
reasoning is a high-level human ability [1] that necessitates multi-
level analysis of the model. MCDN modifies a Transformer Encoder
module to obtain semantic representation at the word level and
combines a novel Self Causal Relation Network (SCRN) module at
the segment level to infer causality via the segments on both sides
of the connectives. Moreover, we claim that integrating multi-level
knowledge may facilitate the token level feature overfitting pro-
posed in [14].

Specifically, as shown in Fig. 1, MCDN splits the sentence into
three segments based on the ‘‘segment before AltLex” (BL),
‘‘AltLex” (L), and ‘‘segment after AltLex” (AL). Intuitively, the cause
and effect usually appear on both sides of the AltLex. This
straightforward prior feature minimizes the impact of feature
engineering complexity and errors. Motivated by explicitly mod-
eling the causal reasoning process, the SCRN module encodes
the segments and aggregates them into pair-wise groups, which
are then concatenated with a sentence representation. Specifi-
cally, the interactions between the cause/effect segments and
the connective, i.e., BL-L and L-AL, emphasize the role of the ambi-
guity of AltLex. It indicates if each segment conveys causality
according to the current AltLex. For example, ‘‘made” is a causal
connective in Fig. 1. However, the sentence ‘‘The baker made a
cake” is non-causal. This illustrates that modeling the interactions
between the AltLex and other segments is essential. Furthermore,
by the interaction between causal segments, i.e., B-A and A-B,
SCRN directly infers the potential causality when the two
segments are coupled in a specific context. It stresses the role
of segments co-occurrence, which also can be seen as we leverage
the learnable parameters of the neural network instead of the
statistical features. The above information constitutes the
segment-level representation.
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Next, we utilize Transformer architecture [19] at the word level.
To maintain the framework fast and light in the large-scale web
text scenario, the heads and blocks of the Transformer Encoder
module are clipped and hence do not employ the pre-trained
weights. Moreover, we extend the segment embedding to fit the
multi-segment structure of the input. With this end-to-end mod-
ule, MCDN combines local context and long-distance dependency
to obtain a word-level representation. Finally, we perform detec-
tion with word-level and segment-level representations.

In general, the contributions of this paper can be summarized as
below:

� First, we propose the MCDN framework for the causality detec-
tion task, which combines the advantages of feature
engineering-based and neural model-based methods, which
analyzes the causality within the sentence at multiple levels.

� Second, the relational reasoning module SCRN explicitly models
the causal relations within sentences. By using this module, our
method achieves a satisfying balance between performance and
consumption compared with conventional neural classifiers
and PLMs.

� Last, we conduct extensive experiments on the implicit causal-
ity detection dataset and take a counterfactual recognition data-
set as a supplement. MCDN improves the SOTA performance of
implicit causality detection and obtains competitive results on
counterfactual recognition.

2. Related work

2.1. Causality mining

Datasets To date, the research interest in the causality of the
community has increased gradually. Early attempts of SemEval
benchmarks [20,21] formulates the causality detection as a rela-
tion classification task, i.e, given an entity pair with its context,
the system needs to classify which relation the pair belongs to.
As the development and evolution of routine events contain abun-
dant causalities, there exists a series of works about event causal-
ity. In Causal-TimeBank [8], the authors introduce ‘‘CLINK” and ‘‘C-
SIGNAL” tags to mark events causal relation and causal signals
based on specific templates, respectively. Do et al. [7] collect 25
newswire articles from CNN in 2010 and release an event causality
dataset that provides relatively dense causal annotations. Similarly
aiming at extracting and classifying events relevant for stories,
Caselli and Vossen [9] annotate a document-level corpus, Event
StoryLine. Recently, Hidey and McKeown [10] expand the defini-
tion of ‘‘AltLex” to collect a large open-domain implicit causality
detection dataset based on parallel Wikipedia articles, which is
more sophisticated and noisy than the datasets above. Further-
more, without annotated symbols of the candidate pairs, the input
of this task is raw text. It requires the models to perform fine-
grained causal inference to figure out the discrepancy between
causal and non-causal relation in the ambiguous or implicit
context.

Methods Prior research can be roughly summarized into two
primary categories: feature engineering-based and neural model-
based. For feature engineering-based methods, a typical work
[22] leverages dependency structure to extract cause-effect pairs.
Zhao et al. [4] divide causal connectives into different classes as
a new category feature based on the similarity of the syntactic
dependency structure within causality sentences. Further studies
incorporate world knowledge as a supplement to lexico-syntax
analysis. Generalizing nouns to their hypernyms in WordNet and
verbs to the parent classes in VerbNet [23–25] eliminates the neg-
ative effect of lexical variations and discovers frequent patterns of
cause-effect pairs. Hidey and McKeown [10] incorporate world



Table 1
Hidey and McKeown [10] use the Simple Wikipedia as the parallel corpus to identify new connectives which are the paraphrases of the original AltLexes in the similar sentences
of the English Wikipedia. The connective ‘‘instead” is a paraphrase of ‘‘consequently” and will be added to the new AltLexes.

AltLexes English Wikipedia Simple Wikipedia

Same A moving observer thus sees the light coming from a slightly different direction
and consequently sees the source at a position shifted from its original position.

A moving observer thus sees the light coming from a slightly different direction
and consequently sees the source at a position shifted from its original position.

Paraphrase His studies were interrupted by World War I, and consequently taught at
schools in Voronezh and Saratov.

However, he had to stop studying because of the World War I, and instead
taught at schools in Voronezh and Saratov.

Table 3
Results on AltLex.

Methods Metrics

Accuracy Precision Recall F1-score

Train set: Training
MCC 63.50 60.32 82.96 69.85
KLD 58.03 91.17 19.55 32.20
LS [ KLD 73.95 80.63 64.35 71.57
LS [ KLD [ CONN 71.86 70.28 77.60 73.76

TextCNN 64:22� 0:68 71:13� 1:03 51:94� 3:13 59:73� 1:87
TextRNN 62:98� 0:34 70:33� 1:24 49:21� 2:15 57:71� 1:08
SASE 63:01� 0:18 64:92� 1:29 62:70� 3:78 63:36� 1:77
DPCNN 61:17� 0:60 61:41� 1:29 68:41� 4:03 64:24� 1:37
DRNN 64:09� 0:18 68:60� 1:40 56:89� 3:12 61:86� 1:25
MCDN 81:04� 0:81 82:28� 1:61 80:70� 0:87 81:47� 0:61

DistilBERT 67:59� 0:65 71:27� 0:63 62:22� 1:10 66:44� 0:81
BERT 65:79� 0:33 66:83� 1:07 67:09� 1:80 66:90� 0:39

Train set: Bootstrapped
KLD [ LS [ LSinter 79.58 77.29 84.85 80.90

TextCNN 74:83� 0:56 73:52� 1:45 80:51� 1:74 76:73� 0:29
TextRNN 75:22� 0:48 73:35� 0:76 81:74� 1:18 77:27� 0:44
SASE 70:02� 0:60 68:01� 0:88 79:30� 1:13 73:17� 0:36
DPCNN 76:66� 0:29 79:33� 1:21 74:29� 1:63 76:62� 0:41
DRNN 75:38� 0:18 73:33� 0:34 83:16� 0:71 77:48� 0:21
MCDN 80:75� 0:18 77:67� 0:36 88:63� 0:77 82:50� 0:19

DistilBERT 77:47� 0:74 75:52� 1:65 83:39� 1:43 79:24� 0:26
BERT 78:18� 0:55 75:89� 0:69 84:55� 0:42 79:98� 0:44

Fig. 1. An example for different segments within an sentence where ‘‘made” is the
AltLex.
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knowledge, such as FrameNet, WordNet, and VerbNet, to measure
the correlations between words and segments, while ignoring
words that never appear during the learning phase. For neural
model-based methods, Oh et al. [3] propose a multi-column convo-
lutional neural network with causality-attention (CA-MCNN) to
enhance MCNNs with the causality-attention. Zhao et al. [24] claim
that constructing a cause-effect network or graph could help dis-
cover co-occurrence patterns and evolution rules of causation.
Therefore, Zhao et al. [2] develop causality reasoning on the
heterogeneous network to extract implicit relations across sen-
tences and discover new causal relations. To remedy the require-
ment of tremendous labeled training data for deep neural
network models, Liu et al. [26] propose a specific reasoner to
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encode the background knowledge from ConceptNet, while Zuo
et al. [27] employ distant supervision to extract and label data from
external resources. The task objective of these two frameworks is
event causality detection, also described as ‘‘relation extraction”
in [28], which is different from the pipeline consisting of causality
detection and cause-effect pair extraction. Finally, the current best
practice [29,13] of cause-effect pair extraction is tagging the role
and position of cause and effect separately. Both S-GAT [29] and
SCIFI [13] utilize a self-attention mechanism to learn the token-
level dependency.

In comparison to feature engineering- and neural model-based
methods, our MCDN not only uses self-attention [29,13] to learn
fine-grained local context and coarse-grained global long-
distance dependency at the word level without any external
knowledge [10,23,26]. We explicitly model causal reasoning to
alleviate overweighting token-level features.

2.2. Relation network

Relation Network is initially a simple plug-and-play module to
solve Visual-QA problems that fundamentally hinge on relational
reasoning [30]. The original Relation Network can only perform
single-step inference such as A ! B rather than A ! B ! C. For
tasks that demand complex multi-step of relational reasoning,
Palm et al. [31] introduce the recurrent relational network that
operates on a graph representation of objects. Relation Network
can effectively couple with convolutional neural networks (CNN)
[32], long short-term memory networks (LSTM) [33], and memory
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networks [34] to reduce network complexity. Models obtain a gen-
eral ability to reason about the relations between entities and their
properties by this module. Recent progress is mainly made towards
text QA and visual QA tasks. To the best of our knowledge, this is
the first time that Relation Network is applied to causality
detection.
3. Preliminaries

3.1. Linguistic background

This section describes the linguistic background of causal
relation and the AltLex dataset that is used in the experiments.
It’s a widely held view that causality can be expressed explicitly
and implicitly using various propositions. In the Penn Discourse
Treebank (PDTB) [35], over 12% of explicit discourse connectives
are marked as causal such as ‘‘hence”, ‘‘as a result” and
‘‘consequently”, as are nearly 26% of implicit discourse relation-
ships. In addition, there is a class of implicit connectives in PDTB
named AltLex (Alternative lexicalization) that is capable of
indicating causal relations, which is an open class of markers
and potentially infinite.

The definition of AltLex is extended to an open class of markers
that occur within the sentence in [10]. The following are examples
widespread in the new AltLexes set but are not included in PDTB
explicit connectives. The word ‘‘made” with many meanings here
is used to express causality. Moreover, the expression of causality
in the second example is fairly ambiguous.

� Ambiguous causal verbs, e.g. The flood made many houses to
collapse.

� Partial prepositional phrases, e.g. They have made l4 self-driving
car with the idea of a new neural network.

According to the statistics of the parallel data constructed by
Hidey and McKeown [10], there are 1144 AltLexes indicating cau-
sal relation and 7647 AltLexes indicating non-causal relation.
Meanwhile, their intersection contains 144 AltLexes, which is
12:6% of causal sets and 1:8% of non-causal sets.

3.2. Notation and definitions

It is assumed that a given Wikipedia sentence S has n tokens.
S ¼ fsigni¼1 where si is a filtered token at position i. We use L to refer
to the AltLex, BL to refer to the segment before the AltLex and AL to
refer to the segment after the AltLex. Our goal is to derive a
sentence-level prediction ŷ of which the label is y as in Eq. (1).
The proposed framework MCDN is shown in Fig. 3. We will detail
each component in the next section.

y ¼ 0 sentence is non� causal
1 sentence is causal

�
ð1Þ

It’s worth noting that Hidey andMcKeown [10] utilize EnglishWiki-
pedia and Simple Wikipedia sentence pairs to build a parallel cor-
pus feature but still take one sentence as input each time. Unlike
this approach, MCDN only relies on the input sentence for causal
inference.
1 https://radimrehurek.com/gensim/
4. Methods

In this section, we elaborate on MCDN, a multi-level neural
network-based method for causality detection with Transformer
Encoder at the word level and SCRN at the segment level, which
is primarily aimed at ambiguous and implicit relations.
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4.1. Input representation

Our input representation is able to incorporate information
from multi-source into a single token sequence. Inspired by [19],
the representation of each token in the input sentence is con-
structed by summing the corresponding word, position, and seg-
ment embeddings. In contrast to BERT, the segment embeddings
in this work indicate the BL, L, and AL segments in each sentence.
As shown in Fig. 2, first, we adopt a word2vec toolkit 1 to pre-
train word embeddings with dword dimension on the English Wikipe-
dia dump. Next, we utilize positional embeddings to map the posi-
tional information because our model has no recurrent
architecture at the word level. Similarly, we use segment embed-
dings to incorporate more linguistic details. The dimensions of posi-
tional embeddings and segment embeddings are dpos and dseg ,
respectively. By summing the three embeddings, we obtain the vec-
tor representation xi 2 Rd for token si where d ¼ dword ¼ dpos ¼ dseg .
The representation xi could provide basic features for high-level
modules.

4.2. Word level

The Transformer Encoder utilized here is composed of stacked
Transformer blocks. There are two sub-layers in each block: self-
attention and feed-forward networks. To ensure stability and supe-
rior performance, we add a residual connection after the layer nor-
malization for each of the sub-layers.

Self-Attention In this paper, we employ scaled multi-head self-
attention, which has many advantages compared with RNN and
CNN. Firstly, the ‘‘receptive field” of each token can be extended
to the whole sequence without long-distance dependency diffu-
sion. And any significant token would be assigned a high weight.
Secondly, dot-product and multi-head can be optimized for paral-
lelism separately, which is more efficient than RNN. Finally, the
multi-head model aggregates information from different represen-
tation sub-spaces. For scaled self-attention, given the input matrix
of n query vectors Q 2 Rn�d, keys K 2 Rn�d and values K 2 Rn�d,
computing the output attention score as follows:

AttentionðQ ;K;VÞ ¼ softmaxðQK
Tffiffiffi
d

p ÞV ð2Þ

We take the input vector matrix X 2 Rn�d as queries, keys, and val-
ues matrix and linearly project them h times, respectively. Formally,
for i-th head Hi it is formulated as below:

Hi ¼ AttentionðQWQ
i ;KW

K
i ;VW

V
i Þ ð3Þ

where the learned projections are matrices
WQ

i 2 Rd�d=h;WK
i 2 Rd�d=h;WV

i 2 Rd�d=h. Finally, we concatenate each

head and map them to the output space with WO 2 Rd�d:

HO ¼ ConcatðH1;H2; . . . ;HhÞWO ð4Þ
Feed-forward Networks We apply feed-forward networks after the
multi-head self-attention sub-layer. It consists of two linear layers
and a GELU activation [36] between them. Note that x is the output
of the previous layer:

FFNðxÞ ¼ GELUðxW1 þ b1ÞW2 þ b2 ð5Þ
where W1 2 Rd�df and W1 2 Rd�df . We set df ¼ 4d in our
experiments.

The Transformer block is stacked N times, of which the final
output hw is regarded as the representation of the sentence at
the word level. We intend to handle the word with its fine-



Fig. 3. The architecture of MCDN. The input sentence is split into words and segments separately and fed into the input representation layer. The left part is the word level
Transformer Encoder, and the right part is the segment level SCRN.

Fig. 2. MCDN input representation. The input embeddings is the sum of the word embeddings, the position embeddings, and the segmentation embeddings.
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grained local context and coarse-grained global long-distance
dependency information. Therefore, our word-level module could
acquire not only lexico-syntax knowledge that manual patterns
rarely cover but also semantic information of the words.
4.3. Segment level

We propose a novel method to infer causality within sentences
at the segment level. The model is named as Self Causal Relation
Network (SCRN) due to its focus on the causal relation intra-
sentence compared with previous studies of Relation Network.
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Dealing with segments The core idea of Relation Network is
operating on objects. In our task, the sentence is split into three
segments BL, L, and AL according to the position of AltLex. The
input representations of these segments can be formulated as
XBL 2 R

TBL�d; XL 2 R
TL�d, and XAL 2 RTAL�d where TBL; TL, and TAL

are the length of tokens in each segment. Due to the variation in
segment lengths, we use a three-column CNN (TC–CNN) to parse
XBL; XL, and XAL into a set of objects. Specifically, the representa-
tions here only employ word and segment embeddings, as the
TC–CNN is capable of capturing the position information. TC–
CNN convolves them through a 1D convolutional layer into k fea-
ture maps of size TBL � 1; TL � 1, and TAL � 1, where k is the sum
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of kernels. The model exploits multi-scale kernels (with variable
window sizes) to obtain multi-scale features. As seen in Fig. 3,
the feature maps of each segment are compressed into a k-
dimension vector by the max-pooling layer after convolution.
Finally, we generate a set of objects for SCRN:

fhBL; hL;hALg 2 Rk ð6Þ
Dealing with the sentence The input representation X of the sen-
tence passes through a bidirectional-GRU (bi-GRU) with dg-
dimension hidden units, and the final state hg 2 R2dg of the bi-
GRU is concatenated to each object-pair.

SCRN We construct four object pairs concatenated with hg . Let
# denote the pair-wise operation. For causality candidates, BL#L
and L#AL indicate the relation between cause-effect and AltLex,
whereas BL#AL and AL#BL infer the direction of causality. The
object pairs matrix HP 2 R4�ð2kþ2dg Þ is shown as follows:

HP ¼

hBL#L; hg

hL#AL; hg

hBL#AL; hg

hAL#BL; hg

2
666664

3
777775 ð7Þ

hBL#L ¼ hBLkhL hL#AL ¼ hLkhAL

hBL#AL ¼ hBLkhAL hAL#BL ¼ hALkhBL

� �
ð8Þ

Here k is a concatenation operation for the object vectors.
Consequently, we modify the SCRN architecture in a mathematical
formulation and obtain the final output hs 2 R4dg at the segment
level:

hs ¼ f /ð
X
i

ghðHPÞÞ ð9Þ

In general, the model converts the segments into object pairs using
TC–CNN and passes sentences through bi-GRU to obtain the global
representation. Then we combine object pairs with the global rep-
resentation and make a pair-wise inference to detect the relation-
ship among the segments. Ablation studies show that the
proposed SCRN at the segment level has the capacity for relational
reasoning and promotes the result significantly.

4.4. Causality detection

Our model MCDN detects the causality of each sentence based
on the output hw at the word level and hs at the segment level.
The two outputs are concatenated to provide a unified representa-
tion hu ¼ hwkhs 2 Rdþ4dg . In this paper, we use a 2-layer FFN con-
sisting of dg units which have a ReLU activation followed by a
softmax function to make the prediction:

FFNðhuÞ ¼ softmaxðReLUðhuW3 þ b3ÞW4 þ b4 ð10Þ
In the AltLex dataset, the number of non-causal examples is over
seven times the number of causal examples, resulting in an
extreme example imbalance problem. If we adopt the
cross-entropy (CE) loss function, the performance would be
unsatisfactory. Moreover, the difficulty in detecting each example
is different. For example, the sentence that contains an ambiguous
AltLex such as ‘‘make” is harder to infer than that contains
‘‘cause”. Consequently, we need to assign a soft weight to a causal
and non-causal loss to make the model pay more attention to
those examples which are difficult to detect. Motivated by Shi
et al. [37], we introduce the focal loss to improve normal cross-
entropy loss function. The focal loss Lfl is defined as the objective
function with the balance weight hyperparameter a and the tune-
able focusing hyperparameter b P 0.
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Lfl ¼ �að1� ŷÞb log ŷ y ¼ 1
�ð1� aÞŷb logð1� ŷÞ y ¼ 0

(
ð11Þ
5. Experiment

In this section, we conduct comprehensive experiments of our
proposed method, MCDN. We release the code and dataset to the
community for further research 2.

5.1. Datasets and evaluation metrics

Datasets We use the AltLex dataset to evaluate the proposed
method. Note that in Hidey and McKeown [10], the original train
set is Training. The Bootstrapped is generated using new AltLexes
to identify additional examples, of which causal ones are increased
by about 65 percent. In our experiment, we train all the models on
the Training set and Bootstrapped set separately, use the validation
set to select hyper-parameters, and then infer on the test set.
Moreover, we utilize the subtask-1 dataset of SemEval-2020 Task5
[14] to validate the effectiveness of MCDN. The SemEval subtask-1
aims at recognizing counterfactual statements, e.g., ‘‘Her post-
traumatic stress could have been avoided if a combination therapy
had been prescribed two months earlier”, and is limited to news
reports from finance, politics, and healthcare domains. As the val-
idation set is not provided by the organizer, we use 9:1 random
data split for training and validation. The detailed statistical infor-
mation about the datasets is listed in Table 2.

Evaluation Metrics Different evaluation metrics, including accu-
racy, precision, recall, and F1-score, are adapted to compare MCDN
with the baseline methods. To understand our model comprehen-
sively, we employ both Area under Receiver Operator Curve
(AUROC) and Area under Precision-Recall Curve (AUPRC) to evalu-
ate its sensitivity and specificity, particularly when causality is rel-
atively sparse in the web text.

5.2. Implementation details

We set the initial learning rate to 1e�4 then decreased half when
the F1-score has stopped increasing more than two epochs. The
batch size in this experiment is 32, and the epoch size is 20. To
avoid overfitting, we employ two types of regularization during
training: 1) dropout for the sums of the embeddings, the outputs
of each bi-GRU layer except the last, each layer in FFN and residual
dropout for Transformer blocks [19]; 2) L2 regularization for all the
trainable parameters. The dropout rate is set to 0.5 and the regular-
ization coefficient is 3e�4. In the self-attention module, we set the
stack time of Transformer blocks N ¼ 4 and the number of atten-
tion heads h ¼ 4. In SCRN, the window sizes of TC–CNN kernels
are in ½2;3;4�, while the sum of kernels is k ¼ 150. We use a 2-
layer bi-GRU with 64 units in each direction. As for the focal loss,
we set a ¼ 0:75; b ¼ 4. For optimization, we employ Adam opti-
mizer [38] with b1 ¼ 0:9; b2 ¼ 0:999; � ¼ 1e�8 and clip the gradi-
ents norm.

5.3. Baseline methods

In this section, the first five feature engineering-based methods
are the most common class (MCC), KLD; LS [ KLD; LS [ KLD [ CONN,
and KLD [ LS [ LSinter . KLD; LS, and CONN represent KL-divergence
score, lexical-semantic feature, and categorical feature, respec-
tively. These methods are used as baselines in Hidey and McKeown
[10]. KLD and LS [ KLD acquire the best accuracy and precision on



Table 2
Experiment Datasets Statistics.

Dataset Type Causal Non-causal Sum Avg. Words

AltLex Training 7606 79290 86896 26
Bootstrapped 12534 88240 100744 25
Validation 181 307 488 25
Test 315 296 611 29

SemEval Train 1454 11546 13000 37
Test 738 6262 7000 38
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the Training set. LS [ KLD [ CONN and KLD [ LS [ LSinter are the best
systems with the highest recall and F1-score, respectively. The fol-
lowing five are the most commonly used deep neural model-based
methods in text classification. They are TextCNN, TextRNN, SASE,
DPCNN, DRNN. In the experiment, we re-implement all of them.
The last two baselines DistilBERT and BERT are based on pre-
trained language models. For DistilBERT and BERT, we use the
base-uncased version 3 and fine-tuned them on each dataset. The
following are detailed descriptions of these baselines:

TextCNN [39] used here has a convolution layer, the window
sizes of which are 2, 3, 4, and each has 50 kernels. Then we apply
max-overtime-pooling and 2-layer FFN with ReLU activation. The
dropout rate is 0.5 and L� 2 regularization coefficient is 3e�4.

TextRNN uses a bidirectional GRU the same as the sentence
encoder in SCRN and max-pooling across all GRU hidden states
to obtain the sentence embedding vector, and the output layer is
a 2-layer FFN. The dropout rate and L2 regularization coefficient
are the same as TextCNN.

SASE [40] employs a 2-D matrix to represent the sentence
embedding, along with a self-attention mechanism and a particu-
lar regularization term. It’s an effective sentence-level embedding
method.

DPCNN [41] is a low-complexity word-level deep CNN model
for sentiment classification and topic categorization. It can make
down-sampling without increasing the number of features maps
which enables the efficient representation of long-range
associations.

DRNN [42] inherits the capacity to capture long-term depen-
dencies from RNN and incorporates the position-invariance of
CNN into RNN to extract key patterns. Moreover, DRNN can adjust
the window size arbitrarily to different tasks.

DistilBERT [16] is a smaller languagemodel distilled from BERT.
DistillBERT has 6 Transformer layers and keeps the same hidden
dimension as BERT. Nevertheless, it retains 97% of BERT perfor-
mance while having 40% fewer parameters and 60% faster than
BERT.

BERT [17] presented state-of-the-art results in a wide variety of
NLP tasks, which is a pre-trained deep language representation
model based on Transformer and Masked Language Model. BERT
is inspired by transfer learning in the computer vision field, pre-
training a neural network model on a known task, such as Ima-
geNet, and then fine-tuning on a new downstream task.

It’s worth noting that for the comparison on the SemEval exper-
iments, we select the best neural model-based baseline DRNN, pre-
trained language models DistilBERT and BERT. Additionally, ON-
LSTM + HAN [43] is a publicly available work on the leaderboard
with the highest score, which doesn’t use any pre-trained language
model in their framework.
5.4. Experiment results

We conduct each reproducible experiment 5 times and then
report the average results with their standard deviation.
3 https://github.com/huggingface/transformers
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AltLex Results: Table 3 shows the results on AltLex of our model
and competing methods using Training and Bootstrapped as the
train set, respectively. First, we can see that MCDN dramatically
outperforms all other models on both datasets by a large margin.
While MCDN does not achieve the highest precision, it improves
F1-score by 10% and 2% compared with the existing best feature
engineering-based methods, LS [ KLD [ CONN and
KLD [ LS [ LSinter . Furthermore, KLD feature-based SVM trained on
Training obtains the highest precision, but has a low recall and
F1-score, because it focuses on the substitutability of connectives,
whereas the parallel examples usually have the same connective
that would be estimated as false negatives. It is remarkable that
the results of MCDN are the most robust when using Training
and Bootstrapped set. Correspondingly, the feature-based linear
SVM and some neural-based methods present a considerable dis-
crepancy and obtain improvements even more than 20 on F1-
score. We believe that the increase of the train set (16%) benefits
the full training of these models.

Second, most neural model-based methods achieve balanced
precision and recall scores except for BERT and MCDN, whose
recall is much higher than precision. And only the average F1-
score of MCDN is beyond 80 when trained on Bootstrapped set,
which has the lowest standard deviation at the same time. The
above results indicate that the neural model-based baselines
employed here do not perform as well as MCDN. It demonstrates
that causality detection is a much more complex task that requires
relational reasoning capability than binary text classification,
despite both can be generalized to the classification task.

SemEval Results: The results on SemEval are shown in Table 4.
In the first block, when compared to the baselines DRNN and ON-
LSTM + HAN, MCDN improves the F1-score by 3.80 and 3.19 on
average, respectively. This verifies the generalization capability of
our method. But in the second block, the performance of MCDN
is slightly lower than DistilBERT and BERT. We conjecture the fol-
lowing reasons: i) the AltLexes set used to split segments is derived
from AlteLex dataset. The number of AltLexes in this set is much
larger than those of SemEval. The segment quality will be impacted
by non-causal and long-tail terms; ii) The SemEval dataset is devel-
oped from new reports in three domains while the word embed-
dings of our model are trained on Wikipedia corpus. To some
extent, the distribution of them is different; iii) The causal exam-
ples in SemEval are extremely sparse. The knowledge learned from
the large pre-training corpus of BERT is superior to our method.
Consequently, in the third block, we integrate DistilBERT and BERT
as the input embedding of MCDN, respectively. The results show
significant improvements compared with using DistilBERT or BERT
alone. Moreover, we reduce the performance gap between Dis-
tilBERT and BERT after adopting our MCDN from 2.79 to 1.69. This
illustrates that although the pre-trained language models provide
strong word-level contextual representations, the segment-level
inference capability of MCDN is still significant for causality
detection.

In general, by combining the advantages of the two categories
of methods, MCDN performs explicit causal reasoning based on
the inherent feature from AltLex. Multi-level representation
enables the model to detect causality more precisely.



Table 4
Results on SemEval.

Methods Metrics

Accuracy Precision Recall F1-score

DRNN 94:28� 0:02 78:35� 0:39 62:92� 0:92 69:79� 0:24
ON-LSTM + HAN – 75.20 66.10 70.40
MCDN 74:74� 1:21 80:06� 2:10 68:25� 2:48 73:59� 0:31

DistilBERT 96:11� 0:12 82:10� 2:42 80:85� 2:50 81:42� 0:18
BERT 96:61� 0:15 82:84� 0:99 85:64� 0:98 84:21� 0:67

MCDN + DistilBERT 96:97� 0:06 86:94� 1:40 83:88� 1:41 85:36� 0:21
MCDN + BERT 97:28� 0:04 87:29� 0:63 86:81� 0:45 87:05� 0:15
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6. Analysis

6.1. Ablation study of MCDN architecture

To demonstrate the synergy between different modules and
their contribution to MCDN performance, we train the different
modules of MCDN separately and compare their ablation compar-
ison. The results are shown in Table 5. We can see that the full
MCDN can obtain the best results most of the time. Meanwhile,
SCRN plays an important role in the overall performance, which
is superior to the competing baselines when trained on a relatively
small dataset. It indicates the significance of causal reasoning capa-
bility for the causality detection task. While the Transformer Enco-
der (TE) is not strong individually, it supplies word-level semantic
information complementing to segment-level inference informa-
tion of SCRN and improves the performance of MCDN.
6.2. Efficiency of MCDN

Training Model with Different Data Proportion To evaluate the
efficiency when the training source is limited, we adopt different
proportions (0.2, 0.4, 0.6, 0.8, 1.0) of Training set and Bootstrapped
set to train MCDN and several baselines. As shown in Fig. 4, both
Table 5
Ablation Study of MCDN Modules AltLex.

Methods Metrics

F1-score AUROC AUPRC

Train set: AltLex Training

MCDN 81:47� 0:61 86:37� 0:47 86:35� 0:54
- SCRN 62:08� 1:07 70:06� 0:18 68:93� 0:31
- TE 79:40� 0:67 86:08� 0:27 85:40� 0:25

Train set: AltLex Bootstrapped

MCDN 82:50� 0:19 88:16� 0:10 88:61� 0:33
- SCRN 76:79� 0:41 80:31� 0:40 78:23� 0:79
- TE 82:09� 0:18 88:02� 0:19 88:75� 0:39

Fig. 4. Analysis of different train data proportion. We report the highest F1-score of MCD
set after 5 runs.
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MCDN and its segment level module SCRN are not as sensitive to
the proportion as the comparison methods. The performance of
MCDN when the proportion is 0.2 is even better than that of others
trained on the complete dataset, demonstrating that MCDN can be
trained with few data and the convergence is relatively fast. In
addition, DRNN and BERT obtain the largest improvement as the
proportion increase from 0.2 to 1.0 on Training set and Bootstrapped
set separately because they are much more difficult to train than
MCDN. It’s obvious that increasing the proportion is more effective
in Fig. 4(b) as the density of causal examples in Bootstrapped set is
much higher than that in Training set. Thus, we conjecture that it’s
essential to improve the performance of MCDN by building a larger
dataset with high causal density.

Comparison of Model Complexity In this section, we follow the
metrics in [16] and focus on the memory and time consumption
reflecting the model complexity. The experiment is on a single
RTX 2080Ti GPU with a batch size of 32. We report the train time
and inference time for a full pass of the SemEval train set and test
set. The comparison is shown in Table 6. MCDN retains 87% of BERT
performance while being 4:62� smaller and 13:90� faster than
BERT, which elucidates that although MCDN doesn’t perform as
well as the pre-trained language models, our method adequately
achieves a balance between the complexity and the performance.
Furthermore, as the pre-trained language models are generally
applied, the results demonstrate that specific architecture like rea-
soning module is still effective in high-level tasks as causality
detection.
6.3. Case study

First, according to the test results, our model correctly detects
part of causal relations where the AltLexes hardly appear in AltLex
Training and Bootstrapped dataset, such as the example (1)(2) in
Table 7. Although all the four models correctly detected the causal-
ity of the two examples, MCDN gives the largest margin of the
probability, especially when the AltLex is ‘‘attribute to”.

Second, the AltLex ‘‘which then” in the example (3), is an impli-
cit clue for the causal relation between ‘‘gives rise to fibrils” and
N, BERT, DRNN, Transformer Encoder, SCRN trained on Training set and Bootstrapped



Table 6
Comparison of Memory and Time Consumption. (The unit of time is seconds, and the unit of parameter is millions)

Methods F1-score #Tra. time (s) #Inf. time (s) #param. (M)

BERT 84.21(�1:00) 162.3(�1:00) 29.2(�1:00) 110(�1:00)
DistilBERT 81.42(�0:97) 61.1(�2:66) 12.4(�2:35) 66(�1:67)
DRNN 66.27(�0:79) 5.6(�28:98) 0.4(�73:00) 7.2(�15:28)
MCDN 73.59(�0:87) 26.2(�6:19) 2.1(�13:90) 23.8(�4:62)

Table 7
Predict scores of different models for the cases. (The score in bold represents the highest score for each case and the score in indicates it leads to a detection error.)

Labels Examples MCDN BERT SCRN TE

(1) Causal The transfer was poorly received by some fans owing to a number of technical and format changes that were viewed as
detrimental to the show’s presentation.

0.999 0.998 0.996 0.974

(2) Non-
causal

Most of the autosomal dominant familial AD can be attributed to mutations in one of three genes: those encoding amyloid
precursor protein (APP) and presenilins 1 and 2.

0.957 0.902 0.788 0.615

(3) Causal One of these fragments gives rise to fibrils of amyloid beta, which then form clumps that deposit outside neurons in dense
formations known as senile plaques.

0.908 0.898 0.348 0.345

(4) Non-
causal

Italy began operations in the Mediterranean, initiating a siege of Malta in June, conquering British Somaliland in August,
making an incursion into British-held Egypt in September 1940.

0.914 0.862 0.144 0.838
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‘‘form clumps”. We find that SCRN and Transformer Encoder fail to
make a correct prediction individually. However, MCDN utilizes
the representation from them and obtains the highest predicted
score. We conjecture that BERT has learned the commonsense
knowledge about the cause-effect in the example (3) by pre-
training, which contributes to detecting the causality. It’s the same
as in example (4) that ‘‘make” doesn’t convey causality as usual
here. The false prediction of SCRN is due to its characteristics. SCRN
takes the segments into account while ‘‘making an incursion” is a
phrase here. These two representative examples demonstrate that
MCDN performs well when faced with ambiguous and implicit
causality. Only the word level or the segment level information is
insufficient to detect causality. MCDN can comprehend specific
semantic representation in the context and infer the relations
among different segments benefiting from the segment level cau-
sal reasoning module.
Fig. 5. Top-10 frequently appeared AltLexes in Altex Bootstrapped and test set. FP: false p
the AltLexes are lemmatized.
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Finally, we investigate the misclassified examples as illustrated
in Fig. 5. It reveals that ‘‘and” is the most frequent AltLex in the test
set with approximately 92% prediction accuracy. The most fre-
quent AltLexes in the false negative and false positive examples
are ‘‘lead to” and ‘‘as”. The accuracy for ‘‘lead to” together with
its variants is 69%, slightly lower than ‘‘due to”. Most false positive
and false negative examples contain verbs or conjunctions as
AltLex, which are not typical explicit causality connectives. In con-
clusion, the essential of performance improvement of MCDN is
detecting ambiguous and implicit causal relations more precisely
and widely.

6.4. Effectiveness for implicit causal relation detection

To verify the capability of our proposed method to detect impli-
cit causal relations. Following Hidey and McKeown [10], apart from
ositive examples in the test result; FN: false negative examples in the test result. All



Table 8
Comparison of implicit causal relation detection capability on the AltLex dataset.
Numbers in each cell represent ‘‘True positives/Total examples of this type” in the
mode predictions.

Methods Explicit Implicit

Causal Non-Causal Causal Non-Causal

MCDN 31/57 141/146 234/258 92/150
BERT 37/57 117/146 224/258 97/150

Table 9
Performance of coupling with different word embeddings.

Type F1-score AUROC AUPRC

word2vec (Wikipedia) 82.50 88.16 88.61
word2vec (Google News) 81.78 86.28 87.00
fastText 81.95 88.36 89.19
GloVe-6B 81.79 86.47 87.86
GloVe-840B 81.38 86.32 87.24

Avg. 81:88� 0:18 87:12� 0:47 87:98� 0:41

Table 10
Zero-shot transfer results on the Constructed Corpus.

Methods Metrics

Accuracy Precision Recall F1-score

Train set: AltLex Training

BERT 59.85 82.79 45.29 58.55
MCDN 75.00 91.45 66.27 76.84

Train set: AltLex Bootstrapped

BERT 57.69 86.96 38.14 53.02
MCDN 75.75 91.19 67.82 77.79
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28 explicit causal connectives provided by the Penn Discourse
TreeBank [35], we define all the rest of the connectives, i.e., con-
ventional and newly identified AltLexes, as implicit connectives.
As shown in Table 8, first respectively given the number of causal
or non-causal relations examples with explicit and implicit con-
nectives in the AltLex test set. Then we calculate the proportion
of the true positives in the model predictions for the causal and
non-causal relations of both connectives. The results indicate that
the performance margin between MCDN and BERT is due to their
implicit relation detection capability gap. Our model could mine
more causal examples with implicit connectives.

6.5. Robustness of MCDN

In this section, we investigate the robustness of MCDN from two
aspects. First, we alternate word representations with a different
source to be word embeddings for MCDN. Then we transfer both
MCDN and BERT trained on AltLex to a constructed corpus directly
to demonstrate the zero-shot performance of our method.

Couple with Different Word Embeddings As is well-known,
BERT uses a word-piece tokenizer to split words into sub-words,
which is different from the pre-trained word embeddings used
by MCDN and other models. Here we aim at evaluating the impact
of different word embeddings on the performance of MCDN.
Word2vec (Wikipedia) is the word embeddings used in MCDN,
word2vec (Google News) 4, fastText [44], and GloVe [45] are utilized
for comparison. As shown in Table 9, the discrepancy between each
word embedding of the average performance is decent, which indi-
cates the performance of MCDN is stable. The relatively weak perfor-
mance of word2vec (Google News) and GloVe compared with
word2vec (Wikipedia) can be attributed to there being more OOV
(out-of-vocabulary) words in their dictionaries. We investigated
additional methods, including trainable embedding for each OOV
word and one stable embedding according to the vocabulary size
for all OOV words, which result in minor performance changes.

Zero-shot Transfer In this experiment, we first filter out positive
sentences containing AltLex from the ‘‘Cause-Effect” relation in the
SemEval-2010-Task8 dataset and then randomly extract equiva-
lent negative sentences from the rest relations. Finally, the corpus
contains 1340 sentences, half of which contain causal relations.

To evaluate the zero-shot causality detection capability of our
method, we transfer the trained MCDN to make predictions on this
4 https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
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corpus directly. Table 10 shows that although the F1-scores drop
by 5.5% and 6.6% separately, MCDN achieves significantly better
results than the fine-tuned BERT, which demonstrates the transfer
of our model.
7. Conclusion

In this paper, we propose a multi-level causality detection net-
work (MCDN) for web text causality detection, especially implicit
and ambiguous relations. To get rid of the complexity and errors
of feature engineering-based methods and enhance the inference
capability of neural model-based methods, we first utilize the
AltLex set to split the text into segments as a prior feature without
any tools to alleviate the complexity and errors of feature
engineering-based methods. Then the segment set is leveraged
for explicit causal reasoning at the segment level. Finally, MCDN
integrates the word-level semantic information from the Trans-
former Encoder module and the inference information at the seg-
ment level from the SCRN module to detect the causality in the
text. Extensive experimental results verify the effectiveness of
our method compared with both feature engineering-based and
neural network-based methods. The analysis of MCDN illustrates
that MCDN makes a satisfying balance between performance and
consumption, which implies the deployment potential to tackle
with large-scale web text causality detection.

In the future, as a downstream task of causality detection, how
to extract cause-effect pairs expressed without connectives or
across the sentences is still a big challenge for the community.
We also consider extending our method in this direction.
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