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Perpetually improving mortality prediction in intensive care units (ICUs) via the implementation 
of eHealth evaluation approaches has become a major research hotspot in the field of medical 
data mining for the purpose of saving lives. Recently, researchers have attempted to achieve 
improved prediction accuracy by using only deep learning-based techniques. However, some 
problems remain. (1) Most of the existing methods utilize independent clinical features to predict 
mortality by eliminating the correlations between the latent features, but this technique may fail 
to comprehensively capture and evaluate the statuses of patients. (2) Several clinical features are 
needed to ensure strong prediction accuracy, but most methods only use static features that are 
not extendable. (3) An effective practical framework that unifies traditional ICU scoring systems 
and state-of-the-art deep learning methods to predict mortality is also lacking. (4) Moreover, the 
interpretability of existing deep learning-based methods needs to be further improved. Therefore, 
we propose a novel dual-core mutual learning framework (DMLF) between ICU scoring systems 
and clinical features for mortality prediction. In particular, we mutually utilize sequential organ

failure assessment (SOFA) scores and clinical measurement features to learn a unified model for 
enhancing the accuracy and interpretability of our DMLF. Experiments conducted on five real-

world disease datasets show that the DMLF achieves significantly better prediction accuracy and 
area under the receiver operating characteristic curve (AUROC) values than six baselines and 
four state-of-the-art methods. Moreover, clinicians utilize a familiarized SOFA system to conduct 
mortality prediction and achieve increased interpretability, which benefits the adoption of the 
proposed framework in real clinical scenarios.
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Table 1

Mortality prediction performance measures achieved on the MIMIC III dataset using ICU scoring systems.

CCS SOFA SAPS II

AUC PRC ACC AUC PRC ACC

2 0.6944 0.4791 0.7368 0.76 0.5706 0.7438

49 0.7051 0.316 0.8681 0.7975 0.4245 0.8508

98 0.6622 0.2507 0.888 0.7991 0.3837 0.8727

101 0.6798 0.2379 0.8917 0.7955 0.3508 0.8647

157 0.6993 0.4413 0.7697 0.7592 0.525 0.7606

CCS: Clinical Classifications Software (CCS) for ICD-9-CM [15];

2: Septicemia (except in labor);

49: Diabetes mellitus without complications; 98: Essential hypertension;

101: Coronary atherosclerosis and other heart disease;

157: Acute and unspecified renal failure.

1. Introduction

Mortality prediction is one of the major research areas in the field of medical data mining; its goal is to provide accurate 
death rate assessments. Mortality prediction is extremely vital in intensive care units (ICUs) because ICU clinicians need to react 
quickly when making decisions and taking actions based on the estimated mortalities to save lives. Moreover, mortality prediction 
is promising for effectively improving health management and reducing the rate of needless deaths [1]. Owing to the demand for 
mortality prediction, a rising number of studies [2–6] have been successfully completed from numerous viewpoints, such as how to 
predict mortality based on the diagnosis of diseases [2], how to model clinical time series data [3,4,7], and how to integrate domain 
knowledge into mortality prediction [5,6].

With the massive increase in the number of electronic health records (EHRs), clinical data have been extensively collected and 
used in precision medicine. Hopefully, a large amount of real-world clinical data are publicly available for researchers, thereby 
boosting studies that use EHRs for clinical data mining. Conventional methods, such as the chronic health evaluation (APACHE) [8], 
sepsis-related organ failure assessment (SOFA) [9], and simplified acute physiology score (SAPS) [10], have implemented clinical 
scoring systems in clinical practice. These scoring systems were established based on physiological data and clinical rules. The 
advantages of scoring systems in real clinical scenarios are their ease of implementation and high interpretability. However, the 
limitation of such scoring systems is their low accuracy because these scoring systems use limited indicators and fixed clinical rules.

Recently, advancements in deep learning have made it possible to more accurately and effectively predict mortality. Researchers 
have made many efforts to use deep learning techniques for mortality prediction [3,2,6,11–13]. Shi et al. attempted to predict 
mortality by using an attention mechanism and a multitask technique [3,2]. Liu et al. constructed a deep dual network integrated 
with medical domain knowledge to predict mortality. Suresh et al. proposed a benchmark for mortality prediction and other learning 
tasks involving ICU data mining [11,14]. Zhang et al. tried to solve mortality prediction with limited EHRs by introducing a meta-

learning method. However, all of these methods were explicitly designed to seek more accurate predictions, but they fail to comply 
with the clinical procedures and information contained in the traditional information comprehension methods. Hence, the existing 
scoring systems are not highly useful in medical knowledge cases. Moreover, deep learning-based methods usually need large amounts 
of data to ensure their prediction quality. Furthermore, deep learning techniques are often described as black boxes; hence, their 
interpretability is limited, which narrows their applicability in real-world clinical scenarios. In addition, the features used in these 
methods are fixed, so their stability and robustness are not sufficiently reliable.

To tackle these limitations, we propose a novel dual-core mutual learning framework (DMLF) between ICU scoring systems and 
clinical features for mortality prediction. The DMLF can utilize the advantages of existing clinical scoring systems and deep learning 
techniques to conduct mortality prediction while achieving high accuracy and reasonable interpretability.

1.1. Motivations and objectives

To bridge the gap between the existing ICU scoring systems and state-of-the-art deep learning methods, we propose two objectives 
to achieve better mortality predictions with higher interpretability.

Objective 1: To design an ICU mortality prediction learning framework with high performance and preserve its in-

terpretability by utilizing existing scoring systems. As shown in Table 1, ICU scoring systems achieve low performance when 
predicting mortality (e.g., the SOFA has a 34.5% area under the precision-recall curve (AUPRC) and a 68.18% area under the re-

ceiver operating characteristic curve (AUROC)). We consider the recent advances in mortality prediction by using deep learning 
frameworks [3,11]. We note that the integration of a scoring system into a learning framework can not only yield better performance 
but also preserve the structure of the scoring system. The benefit of this framework is that it achieves more reliable interpretability, 
enabling it to adapt to real clinical circumstances. Therefore, we implement the SOFA as the scoring system for building the learning 
framework in this paper.

Objective 2: To achieve state-of-the-art prediction performance through mutual learning mechanisms. Inspired by the 
success of related works on mortality prediction [3,16–18] and the power of mutual learning [19], Shi et al. [3] achieved nearly 
2

97.89% accuracy and a 93.69% AUROC on diseases concerning essential hypertension by using EHRs from the MIMIC III dataset 
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[20]. We believe that it is possible to achieve an enhanced learning performance by utilizing mutual information derived from 
a traditional scoring system and a state-of-the-art learning method. As the employed scoring system is well designed and has been 
tested in practical situations for a long time, it can also be effectively implemented from a theoretical perspective. Moreover, the most 
significant advantage of a scoring system is its interpretability. Learning methods are designed to learn latent representations from 
unhandled raw EHRs, and experiments on real-world datasets demonstrate the correctness and high performance of these methods. 
Therefore, theoretically, we utilize the mutual learning among these kinds of methods to achieve both improved interpretability and 
enhanced performance. Therefore, the second goal in this work is to build a unified dual-core framework to mutually learn latent 
information from scoring systems and raw clinical features.

1.2. Our contributions

To eliminate the deficiencies of existing techniques, first, we present a dual-core mutual learning framework to learn from ICU 
scoring systems and raw clinical EHRs; then patients’ severity levels are evaluated in this work. We also formulate the obtained SOFA 
scores as a directed graph 𝐺 = (𝑉 , 𝐸) with a node set 𝑉 and an edge set 𝐸. 𝑉 stands for the SOFA score, which indicates the patient’s 
current severity status, and 𝐸 represents the status change trajectory. Second, we learn latent representations from the raw EHRs by 
using residual gated recurrent units (RGRUs). Next, we mutually use an attention mechanism and a cross-shared unit (CSU) to learn 
from the SOFA graph and the raw clinical features. Finally, we use a unified state layer to evaluate mortality and predict the results. 
Our contributions are summarized as follows. 1) The SOFA scores are formulated as a gated graph neural network (GGNN), which 
is integrated into a unified learning framework. 2) RGRUs are introduced to learn latent representations from the unhandled raw 
clinical EHRs. 3) A CSU is explicitly designed to mutually leverage the information derived from the GGNN and RGRUs and establish 
a unified framework (the DMLF). 4) The effectiveness of our proposed framework is verified on the top 5 most frequently diagnosed 
diseases from the real-world MIMIC-III dataset. The experiments demonstrate that our method provides the best performance in 
comparison with a variety of baseline methods and five state-of-the-art methods.

2. Related work

In general, two categories of approaches are available: case-oriented methods with the medical domain and statistical knowledge-

based methods [21]; these approaches are called traditional methods (or data-driven methods with data mining techniques) and 
deep learning algorithms (or deep methods), respectively. We briefly review some of the relevant works in each category and refer 
readers to [22,23] for comprehensive surveys.

Traditional methods. The earliest approach for evaluating patient severity is the life table [21], which tries to use fixed physi-

ological features to assess mortality. Later, a variety of scoring systems were developed to evaluate severity, such as APACHE scores 
[8], Glasgow coma scale (GCS) [24] scores, SAPSs [10] and SOFA [9] scores. In recent years, researchers have attempted to adopt 
machine learning techniques, such as support vector machines (SVMs), logistic regression (LR), extreme gradient boosting (XGBoost), 
and random forests (RFs) [25], to solve this problem with the use of EHRs. The traditional mortality prediction methods utilize EHRs 
[26,6] and usually aggregate clinical features first and then make predictions, but they ignore the temporal information gap between 
features and the latent information among feature sequences. Although most of these traditional methods have the capability to 
provide clinical interpretations, their applications are constrained due to inaccuracy.

Deep methods. In recent years, deep learning approaches have achieved exceptional success in many areas by constructing deep 
hierarchical features and capturing longitudinal dependencies within data [25]. The supremacy of deep methods is due to their better 
performance and reduced use of feature engineering [27].

BK-DDN [6] is a knowledge-aware deep dual network for mortality prediction that fuses the representations of medical knowledge 
and raw text for prediction and achieves good prediction performance. Suresh et al. [11] proposed a benchmark task for mortality 
prediction and submitted a baseline by using multitask learning. However, the article [6,11] failed to consider the local temporal 
dependencies in EHRs and information about traditional scoring systems. To capture local and temporal dependencies, Che et al. [28]

proposed a multilayer convolutional neural network (CNN) model to learn medical feature embeddings to address the problems of 
high dimensionality and temporality for mortality prediction [28]. However, this model fails to establish the latent relations among 
different features.

Recently, the recurrent neural network (RNN) and its variants have demonstrated the importance of handling time series data. 
Many efforts have been made to model EHRs by utilizing RNNs, and these approaches have achieved the best performance in 
terms of the accuracy and area under the curve (AUC) metrics [27,29–31]. The most obvious drawback of employing RNNs is their 
interpretation difficulty. This may not create a problem in some areas (e.g., image classification) because the end user can distinguish 
whether the obtained result is true or not. However, RNNs are not applicable in the medical domain because medical results cannot 
be intuitively judged, and it is also difficult for clinicians to trust the results of a model with weak interpretability. To enhance 
the ingenuity of interpretation, graph-based models have been developed to solve learning problems, and they have achieved great 
success in natural language processing (NLP) [32], computer vision (CV) [33], and social computing [34]. However, some issues 
remain regarding the transplantation of graph models into the healthcare area. The first concern is the node edge selection problem. 
In this case, we cannot directly select all the records as nodes because the number of records is massive. Therefore, it is impossible 
to directly design such a large graph. The second issue is how to model temporal information in a graph.

In this work, to bridge the gap between traditional scoring systems and the most advanced deep learning techniques, we build 
3

a DMLF to predict mortality for ICU patients. The first core is a SOFA sequential graph core (SSGC), which is a sequential SOFA 
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Fig. 1. The DMLF. (A): We start from a patient’s SOFA score graph and (C) a raw time series clinical feature matrix representation of their clinical measurements 
and medical treatments. (B): By incorporating neighboring node information, we iteratively update the node feature vectors. By applying multiple iterations of node 
embedding, based on the representation of the node of interest and those of the node’s neighbors, a neighboring SOFA feature vector ℎ𝑠 is calculated. To account for 
the effects between raw clinical features and SOFA scores, a CSU is designed for the mutual learning (D) of latent representations from the hidden states of the SOFA 
scores and raw clinical features. In addition, a pairwise attention mechanism is adopted to produce a context vector for each SOFA node and raw clinical feature pair 
< 𝑣, 𝑟 > as a learned, weighted combination of all sequential nodes and raw feature vectors. Finally, (E) through concatenation, the SOFA features, context vectors, 
and latent representation vectors from the CSU are used to jointly predict mortality.

score-constructed graph neural network. The second core is a raw data learning core (RDLC), which is a raw EHR neural network 
created by utilizing RGRUs. We mutually acquire the information from the SSGC and RDLC and use it for mortality prediction. The 
DMLF achieves the best prediction performance and preserves the interpretability derived from the scoring system. The problem 
statement and our methodology are discussed in the next section.

3. Methodology

The use of supervised deep learning techniques for clinical trials has enabled a new level of prediction performance beyond that of 
the traditional existing clinical methods (i.e., clinical scoring systems). However, high-performance approaches bring trustworthiness 
concerns due to the “black box” problems in deep learning methods, so clinicians have historically distrusted neural network models 
[35]. To achieve our first objective, a novel mortality prediction framework is designed by using an existing ICU scoring system. 
In this work, we use the SOFA scoring system for Modeling purposes. Scoring systems have been adopted in real clinical practice 
for many years and have proven their efficacy. Clinicians are familiar with these systems and know their principles and internal 
mechanisms well. Scoring systems are utilized and integrated into neural networks to conduct mortality prediction, which will 
improve both prediction performance and model interpretability. The architecture of the SOFA scoring system model is presented in 
Fig. 1 (A) and Fig. 1 (B).

To satisfy our second objective, we implement a state-of-the-art prediction approach to achieve improved performance. It is 
inadequate to solely utilize clinical scoring systems to obtain the best performance because scoring systems use a relatively small 
amount of clinical features to indicate a patient’s severity. For example, SOFA uses ten clinical indicators: partial pressure of oxygen, 
fraction of inspiration oxygen, platelets, bilirubin, mean arterial pressure, dobutamine, dopamine, Glasgow coma score, creatinine, 
and urine output. Upon comparing hundreds of monitoring and laboratory testing indicators that inadequately use scoring systems to 
comprehensively evaluate a patient’s status, undoubtedly, neural networks cannot achieve the best performance through the sole use 
of these ten indicators. In this work, we incorporated more clinical indicators derived from raw clinical EHRs into the neural network 
to boost its prediction performance. The method of introducing raw clinical features into the main framework to boost performance 
is shown in Fig. 1 (C) and Fig. 1 (D).

3.1. Problem statement

For 𝑇 given hours of an ICU stay, it is assumed that a series of clinical observations 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑖}𝑇𝑖≥1 have been made during 
4

the stay, where 𝑥𝑖 = [𝑥𝑖𝑠; 𝑥𝑖𝑟] is a concatenated vector that represents the 𝑖-th observation vector. 𝑥𝑖𝑠 represents the SOFA score 
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vector (the scores are based on six different aspects: cardiovascular, hepatic, coagulation, renal and neurological systems.)1 in the 
𝑖-th observation, and 𝑥𝑖𝑟 represents the raw clinical feature vector (e.g., temperature, sodium, glucose, heart rate, etc.) in the 𝑖-th 
observation. For each ICU stay, we also provide a binary label 𝑦 ∈ {0, 1} to indicate whether the patient died within a specific time 
period. Our objective is to generate a sequence-level mortality prediction for each ICU stay.

3.2. SOFA score graph modeling

Let us define 𝐺 = (𝑉 , 𝐸) as a directed graph, where 𝑉 is the set of nodes and 𝐸 is the set of edges. Node 𝑣 ∈ 𝑉 takes unique values 
from the SOFA scores 1, 2, ⋯ , |𝑉 | (SOFA records six systems with scores ranging from 0-4, and the number of nodes is 56 = 15625), 
and the edges are paired as 𝑒 = (𝑣, 𝑣′) ∈ 𝑉 × 𝑉 . The node vector for node 𝑣 is denoted by ℎ𝑣 ∈ℝ𝐷 . We add node labels (the patient’s 
physiological features that are used to calculate their SOFA scores) 𝑙𝑣 ∈ 1,2,⋯ ,𝐿𝑣 for each node 𝑣 and edge labels (diagnosed patient 
diseases) 𝑙𝑒 ∈ 1,2,⋯ ,𝐿𝑒 for each edge. We overload the notations as ℎ𝑠 = {ℎ𝑣|𝑣 ∈ 𝑆} when 𝑆 is a set of nodes and as 𝑙𝑠 = {𝑙𝑒|𝑒 ∈ 𝑆}
when 𝑆 is a set of edges. We use the 𝐼𝑁(𝑉 ) function and 𝑂𝑈𝑇 (𝑉 ) function to obtain the predecessor node set and successor node set, 
where 𝐼𝑁(𝑉 ) = {𝑣′|(𝑣′, 𝑣) ∈ 𝐸} and 𝑂𝑈𝑇 (𝑉 ) = {𝑣′|(𝑣, 𝑣′) ∈ 𝐸} return node sets 𝑣′ with 𝑣′ → 𝑣 and 𝑣 → 𝑣′, respectively. The neighbor 
set of node 𝑉 is denoted as 𝑁𝐵(𝑣) = 𝐼𝑁(𝑉 ) ∪𝑂𝑈𝑇 (𝑉 ), and the neighbor edge set is denoted as 𝑁𝐵𝐸(𝑣) = {(𝑣′, 𝑣′′) ∈𝐸|𝑣′′ = 𝑣′ ∨ 𝑣}.

As shown in Fig. 1 (B), we map the SOFA graph to produce an output via two steps. First, we compute the node representation 
for each node via interactive embedding, namely, the propagation step. Next, for each 𝑣 ∈ 𝑉 , we use the output model 𝑂𝑣 = 𝑔(ℎ𝑣, 𝑙𝑣)
to map the node representations and correspondingly label them to outputs 𝑜𝑣. The initial node representation ℎ0

𝑣
is set to 𝑥𝑣, where 

𝑥𝑣 is the input node. Then, each node representation is updated via the update function 𝑓 ∗:

𝒉𝑣 = 𝑓 ∗(𝑙𝑣, 𝑙𝑒, 𝑙𝑁𝐵𝐸𝑣
, (ℎ1

𝑁𝐵𝐸𝑣
,⋯ , ℎ𝑖

𝑁𝐵𝐸𝑣
)), 𝑖 ≥ 1 (1)

where 𝑓 ∗ is a neural network and 𝑖 is a predefined parameter used to control the spread breadth. We formulate the final representation 
of node 𝑣 as:

𝒉𝑠𝑣 =
∑

𝑗∈𝑁𝐵𝐸𝑣

𝒂𝑗𝒉𝑣𝑗
,

∑
𝑗∈𝑁𝐵𝐸𝑣

𝑎𝑗 = 1, 𝑎𝑗 ≥ 0 for 𝑗 ∈𝑁𝐸𝐵𝑣 (2)

where 𝒉𝑠𝑣 ∈ ℝ𝑚 denotes the final representation of SOFA node 𝑣, 𝑁𝐵𝐸𝑣 represents the neighbors of node 𝑣, ℎ𝑣𝑗
indicates the basic 

embedding of node 𝑣𝑗 , and 𝑎𝑗 ∈ ℝ+ is the attention weight on embedding ℎ𝑣𝑗
when 𝒉𝑠𝑣 is calculated. The attention mechanism is 

discussed in Section 3.6.

3.3. Propagation model

Similar to the work of Li et al. [36] and Beck et al. [32], we unroll the recurrence and use backpropagation to compute the 
gradients. Unlike in their works, where the recurrence was unrolled to a fixed number of steps, we define the number of unrolling 
steps as a dynamic value in this work. The RNN used in our work is a GRU, and its full component, the GGNN, is defined as follows:

𝒓𝑡
𝑣
= 𝜎(𝑐𝑟

𝑣

∑
𝑣′∈𝑁𝐵𝐸𝑣

𝑾 𝑟
𝑙𝑒
ℎ𝑡−1
𝑣′ + 𝒃𝑟

𝑙𝑒
) (3)

𝒛𝑡
𝑣
= 𝜎(𝑐𝑧

𝑣

∑
𝑣′∈𝑁𝐵𝐸𝑣

𝑾 𝑧
𝑙𝑒
ℎ𝑡−1
𝑣′

+ 𝒃𝑧
𝑙𝑒
) (4)

𝒉̃
𝑡

𝑣
= 𝜌(𝑐𝑣

∑
𝑣′∈𝑁𝐵𝐸𝑣

𝑾 𝑙𝑒
(𝑟𝑡

𝑣′
⊙ℎ𝑡−1

𝑣′
) + 𝒃𝑙𝑒 ) (5)

𝒉𝑡
𝑣
= (1 − 𝑧𝑡

𝑣
)⊙ℎ𝑖−1

𝑣
+ 𝑧𝑡

𝑣
⊙ 𝒉̃

𝑡

𝑣
(6)

where 𝜎 is the sigmoid function and 𝜌 is a nonlinear function. We initialize 𝒉0
𝑣
= 𝑥𝑣, where 𝑥𝑣 indicates the embedded representation 

of node 𝑣. To eliminate the scale factors that might exist between variables, we add normalization constants to the control gates and 
hidden state, where 𝑐𝑣 = 𝑐𝑧

𝑣
= 𝑐𝑟

𝑣
= |𝑁𝑣|−1.

3.4. Sequential clinical feature learning by utilizing raw EHRs

Raw clinical EHRs carry exhaustive information, which helps to comprehensively evaluate a patient’s severity. In this work, we 
utilize raw clinical features to boost the learning performance of our approach. Raw clinical features are composed of two parts: 
clinical charting features 𝑢𝑐 and medical treatments features 𝑢𝑚. Instead of simply concatenating the raw clinical features, we first 
use the window alignment operation proposed in Shi et al. (2019) [2] to simultaneously align the clinical measurements and medical 
treatments in step 𝑡. Then, we use a stacked RNN to learn representations ℎ𝑐 and ℎ𝑚 for the clinical measurements and medical 
treatments, respectively. Next, we concatenate ℎ𝑢 = ℎ𝑐 ⊙ ℎ𝑚, the raw clinical representations, as the input of the neural network. 
⊙ represents the concatenation operation. 𝑢𝑐 and 𝑢𝑚 denote the raw clinical features obtained from clinical measurement and the 
5
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Fig. 2. GRU and RGRU.

medical treatment features in Fig. 1 C, respectively. All time series data 𝑢𝑐 and 𝑢𝑚 are sliced according to their SOFA scores during 
the same time span. The length of each ICU stay is cut or padded with zeros to a fixed number of hours, and an observation is made 
once per hour. The main architecture of the raw clinical feature learning process is a stacked RGRU. We introduce the RGRU in detail 
in the following section.

3.5. Stacked dual RGRU

A stacked RNN layer is designed to capture the dependencies between the raw clinical features and patients’ severity levels, and 
the RNN layer is realized by an RGRU component. As shown in Fig. 2, similar to the traditional GRU, the RGRU also has two gates to 
control the flow of the input and hidden states. However, their implementation mechanisms are different. Given an input 𝑥𝑡 at time 
𝑡 and the previous state ℎ𝑡−1, the new state ℎ𝑡 is calculated by the following equations:

𝒇 𝑡 = 𝜎(𝑾 𝑥𝑓𝒙𝑡 +𝑾 ℎ𝑓𝒉𝑡−1 + 𝒃𝑓 ) (7)

𝒐𝑡 = 𝜎(𝑾 𝑥𝑜𝒙𝑡 +𝑾 ℎ𝑜𝒉𝑡−1 + 𝒃𝑜) (8)

𝒉𝑡 = (1 − 𝒇 𝑡)⊙ 𝒉𝑡−1 + 𝒇 𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑾 𝑥𝑖𝑥𝑡) + 𝒃ℎ (9)

𝒐𝒉𝑡 = (1 − 𝒐𝑡)⊙ 𝒉𝑡 + 𝒐𝑡 ⊙ 𝒙̃𝑡 + 𝒃𝑜ℎ (10)

where 𝑓𝑡 is a forget gate used to control the information flow from the previous time step 𝑡 − 1 to the current time step 𝑡 and 𝑜𝑡 is a 
residual gate employed to control the information flow from the previous layer to the next layer. 𝑜𝑡 is a residual gate that controls 
the information flow from the previous layer to the next layer. 𝜎 is a sigmoid function, and ⊙ denotes elementwise multiplication. 
𝑾 ∗ is a weighted parameter metric, where ∗∈ {𝑥𝑓, ℎ𝑓, 𝑥𝑜, ℎ𝑜, 𝑖, 𝑥𝑜ℎ}. 𝒃∗ is the bias vector, where ∗∈ {𝑓, 𝑜, ℎ, 𝑜ℎ}. 𝒙̃𝑡 is calculated by 
the following function:

𝒙̃𝑡 =

{
𝑥𝑡 if 𝑠𝑖𝑧𝑒(𝑥𝑡) = 𝑠𝑖𝑧𝑒(ℎ𝑡),
𝑡𝑎𝑛ℎ(𝑾 𝒙𝒐𝒉𝒙𝒕) otherwise.

(11)

EHRs have strong time dependencies. For example, clinical measurements (e.g., body temperatures) taken at 𝑡𝑖 affect medical 
treatments (e.g., aspirin) performed at 𝑡𝑗 , where 𝑖 < 𝑗. Similarly, medical treatments (e.g., insulin) performed at 𝑡𝑗 can also reflect a 
patient’s physiological status (e.g., blood glucose) at 𝑡𝑖, where 𝑖 < 𝑗. This is very similar to the word dependencies in a sentence in 
the field of NLP [37]. To capture these time dependencies, a bidirectional RGRU (BRGRU) is adopted in this work. The BRGRU uses 
two directional representations for the time series inputs, making it similar to a bidirectional GRU [38]. As shown in Fig. 1 C, we 
concatenate the hidden states generated by the RGRU in both directions by using the following equations:

𝒉𝒕 = ⃖⃖𝒉𝒕 ⊕ ⃖⃗𝒉𝒕 (12)

where ⃖⃗𝒉𝒕 is the clockwise direction, and ⃖⃖𝒉𝒕 is the counterclockwise direction.

3.6. Mutual attention learning from SOFA scores and raw clinical features

Considering the interrelationships among the SOFA scores and the outer relationships between the clinical features and SOFA 
scores, as shown in Fig. 1 (D), we add two attention layers. The first is a SOFA score self-attention layer that calculates the weights of 
SOFA scores. The second is a pairwise mutual attention layer that reveals the correlation between the SOFA scores and raw clinical 
features. As shown in Fig. 1 (B), in a SOFA graph, each node 𝑣𝑖 is calculated with an integrated SOFA vector ℎ𝑠𝑣 ∈ ℝ𝑚, where 𝑚
represents the embedding dimensionality. Then, ℎ𝑠1, ℎ𝑠2, ⋯ , ℎ𝑠|𝑉 | are the SOFA embeddings of nodes 𝑣1, 𝑣2, ⋯ , 𝑣|𝑉 |. The SOFA node 
embedding calculation process is described in Section 3.2. The attention weights are calculated by using a softmax function, as shown 
6

in Eq. (2):
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𝒂𝑗 =
𝑒𝑥𝑝(𝑓 (h𝑣,h𝑣𝑗

))∑
𝑘∈𝑁𝐵𝐸𝑣

𝑒𝑥𝑝(𝑓 (h𝑣,h𝑣𝑘
))

(13)

where 𝑓 (ℎ𝑣, ℎ𝑣𝑗
) is a scalar value that represents the compatibility between the basic embeddings h𝑣 and h𝑣𝑗 . Similar to the work of 

Edward et al. [39], we use a feedforward network and a single hidden layer to compute 𝑓 (ℎ𝑣, ℎ𝑣𝑗
):

𝑓 (ℎ𝑣,ℎ𝑣𝑗
) = 𝑞⊤

𝑎
𝑡𝑎𝑛ℎ(𝑾 𝑎

[
ℎ𝑣

ℎ𝑣𝑗

]
+ 𝑏𝑎) (14)

where 𝑾 𝑎 ∈ ℝ𝑛×2𝑚 is a weight matrix for the concatenated vector 𝒉𝑣→𝑗 and 𝒃𝑎 is a bias vector for generating the scalar values. 𝑛
represents the dimensions of the hidden state 𝑓 (⋅, ⋅).

Different from SOFA score self-attention, we use scaled dot-product attention [40] to calculate the pairwise mutual attention 
mechanism. To implement this mechanism, we first generate a representation of 𝒖𝑐 and 𝒖𝑚. We denote this representation as 𝒉𝑢 =
𝑓 (𝒖𝑐 , 𝒖𝑚), where 𝑓 (⋅, ⋅) is a simple embedding function. The hidden representation of a SOFA score 𝒉𝑠𝑣 is calculated in Section 3.2. 
Then, we use 𝒉𝑢 and 𝒉𝑠𝑣 to conduct an attention concatenation operation. The attention score calculation process can be expressed 
as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸, (𝑲 ,𝑽 )) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑸𝑲⊤√
𝑑

)𝑽 (15)

where 𝑸, 𝑲 , 𝑽 are the matrices formed by the query, key, and value vectors, respectively, and 𝑑 is the dimensionality of the key 
vectors. We use 𝒉𝑢 and 𝒉𝑠𝑣 as the query vector and tuple (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) vector for alternately calculating the attention scores 𝜆𝑢, 𝜆𝑠𝑣. As 
shown in Fig. 1 (D), we concatenate 𝒉𝑢𝑠 = 𝜆𝑢𝒉𝑢 ⊕ 𝜆𝑠𝑣𝒉𝑠𝑣 as one of the inputs for participating in the final predictions.

3.7. Dual-core mutual learning via a CSU

After the representations of the GGNN and RGRU are obtained, the pieces of information derived from the traditional SOFA 
system and the raw EHRs are separated from each other. However, the SOFA scores and raw clinical features have strong relations 
regarding the assertion of patient severity. For instance, the SOFA scores from the respiratory system are mainly based on PaO2∕FiO2, 
and PaO2∕FiO2 is closely related to other features, such as the respiratory rate, heart rate, O2 flow and tidal volume. Compared to 
the SOFA scores, the raw records can provide more information for asserting severity, but they provide smaller granularity. The 
SOFA system was explicitly designed by clinicians and experts and has been tested empirically, and its efficacy in asserting severity 
is moving in a proper direction. SOFA scores are used to evaluate patient mortality, and they are more intuitive than the raw figures. 
In addition, the SOFA system is also used for interpretability.

The CSU is designed to consider the interactions between raw EHRs and the SOFA system. Let 𝑈, 𝑢 and 𝑆, 𝑠 represent the indices 
of the raw clinical feature embeddings and the SOFA feature embeddings, respectively. We overload the notation to assume the 
following:{

𝑚̄ = 𝑠,𝑀 =𝑈 if 𝑚 = 𝑎

𝑚̄ = 𝑢,𝑀 = 𝑆 if 𝑚 = 𝑢
(16)

where 𝑀 ∈ {𝑈, 𝑆} and 𝑚 ∈ {𝑢, 𝑠}. We first compute the composition vector 𝒂𝑴
𝑖𝑗

∈ℝ𝑵 through the following tensor operator: 𝑎 = 𝑢𝑝 = 𝑠

𝒂𝑖𝑗 = 𝑓𝑚(𝒉𝑚
𝑖
,𝒉𝑚̄

𝑗
) = 𝑡𝑎𝑛ℎ((𝒉𝑚

𝑖
)⊤𝑮𝑚𝒉𝑚̄

𝑗
) (17)

where 𝒉𝑚
𝑖
∈ 𝒉𝑀 is the hidden representation at the 𝑖-th time step, and 𝑮𝑚 ∈ℝ𝑁×2𝑑×2𝑑 are 3-dimensional tensors. 𝑵 is a unified hy-

perparameter. These tensor operations can be seen as multiple bilinear terms that have the capability of modeling more complicated 
compositions between two vectors [41,37]. After obtaining the composition vectors, a cross-shared score 𝑺𝑯𝑀

𝑖𝑗
is calculated by the 

following equation:

𝑺𝑯𝑀
𝑖𝑗

= 𝒗⊤
𝑚
𝒂𝑀
𝑖𝑗

(18)

where 𝒗𝑚 ∈ℝ𝑁 is a weight vector used to weight each value of the composition vector. 𝑺𝑯𝑀
𝑖𝑗

can be regarded as a scalar. As shown 
in Fig. 1 (D), we use two matrices 𝑺𝑟𝑎𝑤 and 𝑺𝑠𝑜𝑓𝑎 to record these scalars. A higher score 𝑺𝑯𝑈

𝑖𝑗
indicates a higher correlation between 

the 𝑖-th clinical feature and the 𝑗-th system of the human body (the SOFA scoring system includes six human body systems). Similarly, 
a higher score 𝑺𝑯𝑆

𝑖𝑗
indicates a higher correlation between the 𝑖-th human body system and the 𝑗-th raw clinical features.

3.8. Unified output

A unified graph-level output mechanism is implemented for mortality prediction. First, we generate a node level representation 
by using the hidden state and attention scores with the help of the following calculations:
7

𝒉𝑣 = 𝑓𝑔(𝒙𝑣,𝒉𝑠𝑣,𝒉
′
𝑠
,𝒉′

𝑢
,𝒉𝑢𝑠) (19)
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Table 2

Detailed description of the dataset utilized for the mortality prediction task.

CCS ID CCS Name ICD9 Code Samples Nodes Edges Death Rate

2 Septicemia (except in labor) 0031, 0202, 0223, 0362, 0380, 449, 0381, 0383, 
03811, 03812, 03819, 0382, 03810, 03840, 
03841, 03843, 03844, 03849, 0388, 0389, 0545, 
77181, 7907, 99591, 99592, 03842,

1,3426 6,340 49,904 0.1496

49 Diabetes mellitus without 
complications

24900, 7915, 25001, 7902, 79021, 79022, 79029, 
25000, 7916, V4585, V5391, V6546

1,2808 4,024 27,342 0.0889

98 Essential hypertension 4011, 4019 2,5851 4,539 31,835 0.0810

101 Coronary atherosclerosis and 
other heart diseases

4110, 4111, 4118, 41181, 41189, 4148, 4130, 
4131, 4139, 4140, 4149, 41401, 41406, 4142, 
4143, 4144, 412, 41400, V4581, V4582

1,9315 4,230 30,966 0.0740

157 Acute and unspecified renal 
failures

5845, 5846, 5847, 5848, 5849, 586 1,7522 6,575 56,213 0.1387

Table 3

Clinical feature list extracted from the raw EHRs.

CATEGORY NAME

CLINICAL MEASUREMENTS 1. Age, 2. Admission Location, 3. Admission Type, 4. Current Service, 5. Ethnicity, 6. Gender, 7. Height, 8. Religion, 9. Weight 
10. GCS Total, 11. GCS Verbal, 12. GCS Motor, 13. GCS Eyes, 14. Arterial BP [Diastolic], 15. Arterial BP [Systolic], 16. Arterial 
BP [Mean], 17. Manual BP [Diastolic], 18. Manual BP [Systolic], 19. NBP [Diastolic], 20. NBP [Systolic] 21. Base Excess, 22. 
Chloride, 23. Calcium, 24. FiO2, 25. FiO2 Set, 26. Heart Rate, 27. Heart Rhythm, 28. Mean Airway Pressure 29. O2 Flow, 30. 
PCO2, 31. PO2, 32. Respiratory Rate, 33. Respiratory Rate Set, 34. SpO2, 35. Temperature, 36. Total CO2, 37. Urine Output 
38. Bicarbonate, 39. Carboxyhemoglobin, 40. Glucose, 41. Hematocrit, 42. Hemoglobin, 43. Intubated, 44. Lactate, 45. 
Methemoglobin, 46. O2 Flow, 47. PH, 48. SO2, 49. Sodium, 50. Tidal Volume, 51. Ventilation Rate, 52. Ventilator 53. 
Albumin, 54. Bilirubin, 55. Blood Urea Nitrogen, 56. Creatinine, 57. Magnesium Sulfate, 58. Platelet, 59. Potassium, 60. WBC

MEDICAL TREATMENTS 1. Dextrose (5%) in Water, 2. NaCl, 3. Propofol, 4. Insulin, 5. Heparin, 6. Fentanyl, 7. Neosynephrine, 8. Phenylephrine, 9. 
Midazolam, 10. Amiodarone, 11. Dopamine, 12. Potassium Chloride, 13. Vasopressin, 14. Triphospho Pyridine Nucleotide, 15. 
Nitroglycerin, 16. Piperacillin, 17. Milrinone, 18. Nitroprusside, 19. Morphine Sulfate, 20. Epinephrine, 21. Dobutamine, 22. 
Diltiazem, 23. Cisatracurium, 24. Calcium Gluconate, 25. Dilaudid, 26. Sodium Bicarbonate, 27. Nicardipine, 28. Esmolol, 29. 
Labetalol, 30. Peptamen, 31. Lidocaine, 32. Thiamine, 33. Metoprolol, 34. Piperacillin, 35. Ampicillin, 36. Albumin 25%

where 𝒙𝑣 is the initial node input, 𝒉𝑠𝑣 is the node representation derived from its neighbors, 𝒉′
𝑠
, 𝒉′

𝑢
is the node representation from 

the CSU, and 𝒉𝑢𝑠 is the node representation obtained from the raw clinical features and SOFA scores. Then, we define a graph-level 
representation vector as:

𝒉𝑔 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
∑
𝑣∈𝑉

𝜎(𝑁𝑁1(𝒉⊤
𝑣
,𝒙𝑣)⊙ tanh(𝑁𝑁2(𝒉⊤

𝑣
,𝒙𝑣))) (20)

where 𝜎(𝑁𝑁1(𝒉⊤
𝑣
, 𝒚𝑣) acts as a soft attention mechanism that decides which nodes are relevant to the current graph-level prediction. 

𝑁𝑁1 and 𝑁𝑁2 are neural networks that take the concatenation of 𝒉⊤
𝑣

. 𝒙𝑣 is the graph input that outputs real-valued vectors.

4. Experiments

4.1. Data description

We conducted experiments on a real-world, publicly available, and deidentified dataset called MIMIC III [20]. It contains struc-

tured (e.g., real-time sensor data, laboratory tests, and treatments) as well as unstructured data (e.g., free-text clinical notes) for more 
than 60,000 ICU admissions between 2001 and 2012 (mainly from two US hospitals).

The dataset was processed to select a cohort of patients who provided meaningful evaluations of mortality prediction methods. We 
filtered the patients whose ICU stay lengths were less than one hour or whose ages were below 16. Based on the patients’ diagnosis 
results listed in MIMIC III, we used clinical classification software to group the patients. We selected the top 5 most frequently 
diagnosed diseases as the data for our experiments. The dataset details are shown in Table 2. In our work, the data were randomly 
split into a training set, validation set, and testing set using a 70% ∶ 20% ∶ 10% ratio.

For each step, we used a six-dimensional vector (𝑥 ∈ℝ6) to record a SOFA score; each dimension represented one body system for 
the SOFA score system. In this work, we used two groups of raw clinical data: clinical measurement data and medical treatment data. 
We selected the top 70 most frequently used clinical measurement features and the top 35 most frequently used medical treatment 
features. We list all these features in Table 3.

4.2. Experimental settings

In our experiment, we collected an observation every hour after a patient was admitted to the ICU to set a time gap of one hour 
8

and made a mortality prediction for 48 hours after each patient’s admission. The dimensions of 𝒖𝑐 and 𝒖𝑚 were 48 × 70 and 48 × 35, 
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respectively. All inputs were normalized with 𝐿2 regularization. The number of SOFA node pools was 56 = 15625. The hidden state 
size of the node and raw clinical representations was 48 × 300. The spread breadth 𝑖 was set to 3. We used Adam as the optimizer 
with a learning rate of 0.0005 and a batch size of 35. We also employed dropout on the outputs of the GGNN layer and RGRU layer 
with a dropout rate of 0.5. The number of epochs was 50.

4.3. Baseline methods

To validate the performance of the proposed DMLF model on mortality prediction, a comprehensive experiment was conducted 
with the following baseline models.

1) SOFA Score2: SOFA scores are widely used to determine the levels of organ dysfunction and mortality risk in ICU patients. 
We used tools from MDCalc to calculate the SOFA scores and mortality rates as one of our baselines. MDCalc is a collection of 
clinical decision tools and contents used by over 1.75 million medical professionals globally, including more than 65% of US 
physicians, every month [42].

2) SAPS III3: SAPS III is a system for predicting mortality and is one of several ICU scoring systems. It was designed to provide real-

life predicted mortality rates for patients by following a well-defined procedure. Predicted mortalities are good when comparing 
groups of patients and possessing near-real-life mortalities. We also used tools from MDCalc to calculate the SAPS III scores and 
mortality rates.

3) Machine Learning Baselines (MLBs). LR, a support vector machine (SVM), a random forest (RF), and XGBoost are traditional 
machine learning methods and are typically used as baselines in related works [3,4,17,43,44]. We use a toolkit from sklearn to 
reproduce our experiments with each of these methods.

4) SAnD: SAnD [17], a multitask model, employs a masked self-attention mechanism and uses positional encoding and dense 
interpolation strategies for mortality prediction.

5) Multitask Channelwise LSTM (MC): MC is a long short-term memory (LSTM)-based multitask model that was proposed by 
Hrayr et al., 2019 [43]. MC has achieved the best mortality prediction performance in comparison with other baselines.

6) Deep Interpretable Mortality Model (DIMM): The DIMM [3] is a multisource deep learning model explicitly designed for 
mortality prediction that utilizes GRU, multihead attention, and focal loss techniques.

7) Gated Graph Sequence Neural Network (GGSNN) The GGSNN [32] is the most recently proposed graph-based method and 
was designed to model sequential graphs. The GGSNN was used as one of the baselines to model SOFA graphs in this work.

4.4. Evaluation metrics

To evaluate the proposed framework comprehensively, we introduced tree evaluation metrics: 1) balanced accuracy (bAccuracy) 
[45]; 2) G-Mean [46]; 3) AUPRC.

4.5. Results

The comparative results are tabulated in Table 4. We grouped the results into four parts: the first part contains mortality prediction 
results from the ICU scoring systems, the second part includes mortality prediction results from the traditional data mining methods, 
the third part consists of the mortality prediction results from the explicitly designed cutting-edge deep learning methods, and the 
last part presents the results of our proposed method.

From the bAccuracy column, it is clear that most of the traditional data mining methods performed better than the scoring systems. 
Among the learning-based methods, deep learning methods outperformed the conventional data mining method by approximately 
38.3%. This suggests that deep learning methods for mortality prediction can achieve better accuracy than clinical methods on the 
basis of daily reports.

SOFA had the lowest G-mean at approximately 58.08%, followed by the SAPS II score. This shows that G-mean is randomly 
attained when using scoring systems. LR, the SVM, and XGBoost were much better in terms of G-mean, achieving an average result 
of 63.68%. The deep learning methods achieved the best performance in terms of precision; this was especially true of our proposed 
framework, the DMLF, which exceeded 86% G-mean scores for all tasks.

For CCSID 2, the AUPRC scores followed a performance sequence of DMLF > GGSNN > DIMM > MC > LR > SVM > X GBoost 
> SAPS II > RF > SOFA > SAnD. This means that the scoring systems and the deep learning-based methods performed better than 
some data mining techniques based on their AUPRC scores. Undoubtedly, the proposed framework (the DMLF) achieved the best 
performance, which suggests that combining scoring systems and deep learning methods is effective. For other tasks, the performance 
was similar to that obtained on CCSID 2 on the basis of the recall rate.

From Table 3, we can see that the performance of different methods varied considerably across various tasks in terms of their 
AUROC values because the sample sizes and the weights of the learning features were different in different tasks, and most of these 
methods were not explicitly designed for mortality learning. Benefiting from the dual-core boosted mechanism, the DMLF could 

2 https://www .mdcalc .com /sequential -organ -failure -assessment -sofa -score.
9

3 https://www .mdcalc .com /simplified -acute -physiology -score -saps -ii/.

https://www.mdcalc.com/sequential-organ-failure-assessment-sofa-score
https://www.mdcalc.com/simplified-acute-physiology-score-saps-ii/
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Table 4

Performance comparison results of all baselines for mortality prediction.

CCS ID CCS NAME METHOD bAccuracy G-Mean AUPRC

2 septicemia SOFA 0.6310 0.5808 0.4791

SAPS II 0.6761 0.6573 0.5706

LR 0.6600 0.6185 0.6048

SVM 0.6866 0.6503 0.6559

RF 0.6524 0.6301 0.4582

XGBoost 0.6784 0.6484 0.6000

SAnD 0.6887 0.6465 0.4171

MC 0.7904 0.7699 0.7801

DIMM 0.8484 0.8420 0.8508

GGSNN 0.8098 0.8184 0.7714

DMLF 0.9185 0.8713 0.8611

49 diabetes SOFA 0.6110 0.5024 0.3160

SAPS II 0.6835 0.6450 0.4245

LR 0.6007 0.4724 0.4867

SVM 0.6152 0.4972 0.4744

RF 0.6479 0.5887 0.3190

XGBoost 0.6178 0.5041 0.4602

SAnD 0.8885 0.8882 0.2474

MC 0.6646 0.5932 0.5402

DIMM 0.8534 0.8466 0.7122

GGSNN 0.7155 0.6887 0.7643

DMLF 0.8984 0.8953 0.8463

98 hypertension SOFA 0.5810 0.4287 0.2507

SAPS II 0.6680 0.6148 0.3837

LR 0.5783 0.4140 0.4207

SVM 0.5880 0.4331 0.4221

RF 0.6166 0.5184 0.2879

XGBoost 0.5795 0.4167 0.3790

SAnD 0.7696 0.7601 0.2450

MC 0.7802 0.7573 0.6159

DIMM 0.8058 0.7877 0.7399

GGSNN 0.8554 0.8471 0.7518

DMLF 0.9107 0.8930 0.8323

101 atherosclerosis SOFA 0.5892 0.4525 0.2379

SAPS II 0.6724 0.6281 0.3508

LR 0.5821 0.4190 0.4724

SVM 0.5837 0.4197 0.4547

RF 0.6355 0.5524 0.2925

XGBoost 0.6259 0.5163 0.4432

SAnD 0.6597 0.5688 0.2479

MC 0.8496 0.8414 0.5775

DIMM 0.8390 0.8275 0.7630

GGSNN 0.6445 0.5434 0.7553

DMLF 0.8727 0.8983 0.8523

157 renalfailure SOFA 0.6297 0.5677 0.4413

SAPS II 0.6806 0.6626 0.5250

LR 0.6563 0.6017 0.5977

SVM 0.6689 0.6075 0.6276

RF 0.6539 0.6254 0.4400

XGBoost 0.6808 0.6428 0.6105

SAnD 0.7026 0.6655 0.4079

MC 0.7626 0.7360 0.7732

DIMM 0.6949 0.6406 0.8494

GGSNN 0.8476 0.8443 0.7731

DMLF 0.8897 0.8622 0.9023

mutually learn latent representations from various sources so that the impacts of different tasks could be dissolved to a great extent. 
We note that in our experiment, the running target was to achieve the best AUROC. Therefore, when compared with the DIMM, we 
did not obtain the best performance in the septicemia task in terms of the AUPRC. Overall, we achieved the best performance in all 
10

tasks among all baselines. This finding suggests that our method is the best approach and fits the mortality prediction task very well.



Information Sciences 637 (2023) 118984Z. Shi, S. Wang, L. Yue et al.

Fig. 3. Interpretability showcase between an SOFA scoring system and the DMLF mortality prediction method. Two patients were diagnosed with acute kidney disease; 
one died after 72 hours in the ICU (patient A), and the other was rescued after 72 hours in the ICU (patient B). The X-axis is the ICU stay time for patients, the y-axis 
is the SOFA score, and the color represents the mortality rate predicted by the DMLF.

4.6. Discussion and case study

The aim of this work was to bridge the gap between existing ICU scoring systems and cutting-edge deep learning methods in ICU 
mortality prediction problems. To actualize this goal, as listed in Section 1.1, we proposed two objectives. To assess our first goal, 
five evaluation metrics were adopted to evaluate our proposed method in comparison with existing ICU score systems. From Table 4, 
we find that our proposed method was 16.93% superior in terms of accuracy and 37.3% superior in terms of precision. Therefore, 
in the ICU mortality prediction scenario, the proposed method significantly outperformed the existing scoring system. Regarding 
method interpretability, as illustrated in Fig. 3, clinicians can evaluate and cross-check predicted mortality rates with an existing ICU 
scoring system utilized daily, such as SOFA. We can see from the figure that the DMLF prediction trend is overall in line with the 
SOFA scores, but the DMLF can provide more accurate prediction results. For example, for the same SOFA score of 4, the mortality 
rate predicted by DMLF for patient A was higher than that for patient B, and the patients’ final results also confirmed this finding; 
i.e., patient A died, while patient B was rescued. Thus, we achieved the requirements of Objective 1.

To assess our second goal, we compared the prediction performance among the three groups of baselines. We can find that in 
terms of prediction performance, the machine learning methods were superior to ICU scoring systems. This indicates that incorpo-

rating machine learning into ICU mortality prediction can improve the prediction ability of the employed model and benefit the 
development of healthcare. Another finding is that the explicitly designed methods performed better than the general machine learn-

ing methods. The DMLF achieved the best performance, indicating that for higher mortality prediction performance, developing and 
customizing a suitable method is a necessity, and the simple reliance on generic methods cannot meet our requirements.

For the proposed method, the DMLF, we evaluated the two cores separately. For single-core modeling, the SOFA score contributed 
to the performance achieved on five different tasks and yielded an average accuracy of 0.815, but the precision varied greatly on 
the five different diseases. This indicates that the prediction process using only the SOFA score system is imprecise. For dual-core 
modeling, we achieved the best performance presented in Table 3. Moreover, the prediction performance was fairly stable (the 
variance was 4.45% vs. 16.93 for the state-of-the-art method). This finding indicates that our framework is on the cutting edge and 
is a reasonable paradigm. Furthermore, the SOFA scores can provide prediction evidence and reasonable explanations for the whole 
prediction process to support researchers, as these systems are very familiar to clinicians. Overall, we achieved Objective 2 proposed 
in Section 1.1. Despite the significant prediction performance and interpretability improvements achieved, our methods still have 
much room for further improvement. The first and the most critical concern remains the interpretability of the network. Although 
we enhanced its interpretability by using the SOFA scoring system, while this is a case-based explanation process, it did not improve 
the interpretability of the deep learning methods, so it cannot be integrated into our framework in an end-to-end manner. Another 
limitation is that our methods cannot be adopted for nonadults due to the insufficiency of the available clinical data.

5. Conclusion

In this paper, we proposed a unified dual-core mutual learning approach, the DMLF, that allows traditional ICU scoring systems to 
work together with raw EHRs to predict the mortality rates of ICU patients. In this work, we proposed two objectives: 1) to design a 
learning framework by utilizing existing scoring systems while preserving interpretability and 2) to achieve state-of-the-art prediction 
performance through mutual learning mechanisms. We used a graph neural network model to realize the first objective, and this 
model is regarded as one of the prediction scores of the proposed framework. To meet the second objective, we used an RGRU to learn 
11

directly from sequential raw EHRs, and this component is noted as another prediction score. We used a well-designed CSU and an 
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attention mechanism to integrate these two scores into a unified learning framework to achieve the optimal prediction performance. 
Experimental results were obtained on a real-world dataset consisting of five tasks to verify the effectiveness and stability of the 
DMLF, and the findings demonstrated that our approach outperformed the baselines in terms of ICU mortality prediction.

All clinical decisions are based on evidence, we provide a visualization between ICU scoring systems’ scores and the model’s 
features weight, to the clinicians for our model to enhance the model’s interpretability. This is crucial to the clinical cohort because 
further medical actions are based on trust chains of the whole prediction process other than a single digit. Nevertheless, how to 
enhance the model’s interpretability still remains a challenge, and our future work can focus on this problem.
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