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Abstract
In recommender systems, leveraging auxiliary behaviors (e.g. view, cart) to enhance the recommendation in the target behavior
(e.g. purchase) is crucial for mitigating the sparsity issue inherent in single-behavior recommendation. This has given rise to
the multi-behavior recommendation (MBR). Existing MBR task faces two primary challenges. First, the irrelevant auxiliary
behaviors that do not align with the target behavior, can negatively impact the prediction accuracy for user preference in
the target behavior. Second, these methods typically learn coarse-grained user preferences, failing to model the consistency
and distinctiveness among multiple behaviors at a fine-grained level. To address these issues, we propose a disentangled and
denoised model for multi-behavior recommendation (DMR), which employs user preferences reflected in the target behavior
to guide the learning of user and item embeddings in auxiliary behaviors. Specifically, we first design a disentangled graph
convolutional network, modeling the fine-grained user preference under multiple behaviors in view of item attribute domains.
We also propose a denoised contrastive learning strategy,wherewe align the user preferences inmultiple behaviors by reducing
the influence of noisy data existing in auxiliary behaviors. Experimental results on two real-world datasets show the proposal
can improve the performance of MBR models effectively, which achieves on average 3.12% on the Retailrocket dataset and
3.28% on the Beibei dataset over the performance of state-of-the-art baselines. Extensive experiments also demonstrate our
model’s competitive performance for fine-grained preference learning and denoised learning.

Keywords Multi-behavior recommendation · Fine-grained preferences · Contrastive learning · Graph convolutional network

Introduction

Recommender system has been an essential tool in daily life
due to its effectiveness for alleviating information overload-
ing [1, 2]. Collaborative filtering (CF) has remained the most
extensively utilized algorithm in recommender systems, and
there exists plenty of CF-based models utilizing traditional
matrix factorization [3] and deep neural network techniques
[4–6], thesemethods achieve significant success in providing
valuable recommendations that guide users in discovering
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their genuine interests. However,most CF-basedmethods are
designed around a specific user behavior, which is contrary
to the different behavior patterns in real-world recommen-
dation scenarios. For example, in the e-commerce platform,
most CF-based models only consider purchase behavior for
predicting users’ preferences, while neglecting other behav-
iors such as view and cart, these behaviors also partly reflect
the user’s purchase intent and play an important role in alle-
viating the sparsity problem. The limitations of considering
single user behavior motivates studies on exploiting the mul-
tiple types of user behaviors, making use of the auxiliary
behaviors (e.g. view, cart) to enhance the prediction of users’
preferences regarding the target behavior (e.g. purchase) [7–
10], which is the multi-behavior recommendation (MBR).

Existing MBR models mainly employ the graph convolu-
tional network (GCN) technique to model semantic interac-
tions between users and items across multiple behaviors [11,
12], due to the superior ability of GCN-based methods in
modeling graph structure data [13–15]. Specifically, these
GCN-based methods model user-item interactions under
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each behavior through the propagation of both user and
item embeddings [12, 16–19], then obtain the aggregated
user and item embeddings from different behaviors to esti-
mate the user preference in the target behavior. Recently,
with the widespread use of the contrastive learning (CL) for
data augmentation in the recommendation system, there is
an increasing number of studies integrating CL and GCN
techniques to deal with the MBR task [17]. These methods
apply GCN to learn user and item embeddings and exploit
CL to further align the user preference in the target behav-
ior and auxiliary behaviors, the CL can complement GCN
to enhance the consistent learning of user preference in mul-
tiple behaviors [20–22]. Typical models such as S-MBRec
(self-supervised graph neural networks for multi-behavior
recommendation) utilizes several parallel GCNs to model
different types of user-item interactions, then designs the
contrastive learning to alleviate the impact of noise data in
auxiliary behaviors, the method shows superior improve-
ments than models that solely rely on GCN. Even though
existing methods have achieved significant success in the
MBR task, they still confront several challenges as detailed
subsequently.

These methods do not take into account fine-grained user
preferences regarding specific item characteristics. In real-
world recommendation scenarios, user behaviors such as
view, cart, and purchase occur primarily because they are
attracted to specific attributes of the item. As Fig. 1 shows,
the user has purchased a T-shirt with color as blue and mate-
rial as cotton, also views and carts a series of items that have
similar attributes to the purchased T-shirt. Obviously, the
user preference is not simply reflected in interacted items,
but is focused more attention on specific item attributes, and
the correlations between different user behaviors are also
reflected in fine-grained item attributes. Existing GCN and
CL basedMBRmodels only consider user preferences based
on similarities betweenuser and itemembeddings,whichwill
lead to limitations for capturing the user’s accurate interest
in some cases [23–25]. For example, these methods can’t
capture fine-grained item attributes, thus may recommend a
pink dress for the user, while the user’s actual intent is a blue
and cotton dress. Some previous work has demonstrated the
actual preferences of the user may be more complex includ-
ing multiple dimensions [26–28]. Therefore, we regard that
it is necessary to model and align user preference reflected
in their behaviors from the perspective of fine-grained item
attributes.

They ignore the noise information at the level of item
attributes in auxiliary behaviors. The noise data in the MBR
task refers to the data in auxiliary behaviors that is inconsis-
tent with the preference distribution in the target behavior.
Before discovering the true purchase intent, a user may view
or cart items that are presented by the recommender system.
Those items may attract his/her attention due to their pop-

ularity or advertising which do not correspond to the user’s
actual purchase intent, thus providing noise information that
are detrimental for predicting the accurate user’s target intent
[21, 29]. These noise data are mixed with other valid data,
and most recommendation models are unable to explicitly
distinguish these data [30]. As a result, how to automatically
remove noise data from auxiliary behaviors has become a
challenge. Existing CL based models can reduce the redun-
dant information in auxiliary behaviors through aligning user
embeddings in auxiliary behaviors and the target behav-
ior [17]. However, the ability of denoising learning through
entangled user embeddings is limited due to the fine-grained
user preference towards item attributes. For example, from
Fig. 1 we can observe that the user’s view behavior includes
a pink dress, while it doesn’t mean the user wants to buy
a pink dress, the user views it is probably due to the style
and material of the dress. In this regard, the noise data in
auxiliary behaviors mainly manifests in some item attributes
that are not related to the user preference in the target behav-
ior. Therefore it is necessary to understand the consistency
and distinctiveness of user preferences in multiple behaviors,
reducing the noise data in a more fine-grained way.

Based on the above discussions, the user usually focuses
on specific item attributes, and the correlations and distinc-
tiveness among multiple behaviors are also based on item
attributes. Towards this end, we propose a novel disentan-
gled and denoised model for MBR, which is shorted called
DMR.Generally, themodel learns fine-grained user and item
embeddings through a disentangled graph convolutional net-
work (DGCN), and plays a role in denoising mainly through
target behavior guided weight in DGCN and multi-attributes
linearized attention mechanism (MLAM) in CL. To be spe-
cific: First, we inject item embeddings into several attribute
domains to disentangle user and item embeddings, which can
model the user’s preference towards specific item attributes
in the latent semantic space. Then, based on the disentangled
attribute domains, we propose DGCN to learn the user pref-
erence in view of different item attribute domains under each
behavior. In each attribute domain for auxiliary behaviors,we
design target behavior guided weight to guide the learning
of weights for user-item interactions in auxiliary behaviors.
This is used for capturing the attributes for items in auxiliary
behaviors that are closely related to user preferences in the
target behavior. We incorporate the weights calculated into
the propagation layers of the GCN to obtain the ultimate user
and item embeddings in each item attribute domain. Next,
we design a denoised contrastive learning (DCL) strategy
to align user preferences in auxiliary behaviors and target
behavior, we design MLAM to further deal with the noise
data in auxiliary behaviors. We explore the importance of
different attribute domains in auxiliary behaviors toward user
intent in the target behavior,which can be used for contrastive
learning in a denoised way so as to distinguish positive and
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Fig. 1 The highlighted part represents the same attributes of items that
have been interacted with by users in Cart and view behaviors, as well
as items that have been interacted with in target behavior. The model

learns that users pay more attention to color attributes (blue) and mate-
rial attributes (cotton). The final prediction result is a blue and cotton
dress, instead of a red dress

negative samples thoroughly. Comprehensive experiments
on two real-world datasets validate the effectiveness of our
model. The results show that our model outperforms the
state-of-the-art baselines.We also conduct ablation studies to
demonstrate the contributions of each module in our model
in terms of improving the model performance on the MBR
task. In brief, our main contributions are as follows:

• First, we disentangle item representations to obtain sev-
eral different item attribute domains for the modeling of
fine-grained user preference inmultiple behaviors. To the
best of our knowledge, ourmodel is the first study to learn
disentangled user preferences in multiple behaviors from
the perspective of item attributes.

• Second,wepropose theDGCN to capture attributes of the
item that the user interacted with in auxiliary behaviors,
which are more in line with the user’s purchase intent,
thus denoising the noise attributes for items in auxiliary
behaviors.

• Third, we design the DCL to align the user preference
in the target behavior and auxiliary behaviors, which can
enhance the learning of correlations between auxiliary
behaviors and target behavior towards different attribute
domains.

• Finally, we conduct experiments on two real datasets and
compare them with some advanced methods to demon-

strate that our proposed method can effectively improve
the performance ofMBR.The extensive experiments also
validate the abilities of our model in denoising learning.

Related work

Multi-behavior recommendation

The practice of multi-behavior recommendation involves
capitalizing on various forms of user-item interactions to
augment the effectiveness of the recommendation. It typi-
cally aims to refine the prediction accuracy for the target
behavior by distilling valuable information from auxiliary
behavior data. Early works are most relied on conventional
collaborative filtering techniques, including matrix factor-
ization (MF) and Bayesian personalized ranking (BPR) [31].
For example, Singh et al. proposed CMF (collective matrix
factorization [7]) to model different user-item interaction
relations, which jointly factorize multiple behavior matri-
ces. Meanwhile, some researchers attempt to extend the BPR
to the multi-behavior recommendation task such as MC-
BPR (multi-channel Bayesian personalized ranking [32]), it
designs negative sampling strategies by generating samples
from multiple behaviors.
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Recently, the graph convolutional network has been
widely applied in the multi-behavior recommendation task
[11, 12, 17, 33–35] due to its strong ability for learn-
ing features from heterogeneous user-item interactions. For
example, Jin et al. proposed MBGCN (multi-behavior graph
convolution network [11]), which utilizes GCN to learn
behavior strength and semantics. Then, Chen et al. pro-
posed GHCF (graph heterogeneous collaborative filtering
[33]), which also utilizes GCN to learn user preference for
multiple behaviors. Specifically, GHCF further embed the
different relations of user-item interactions, incorporating
both user/item and relation embedding for learning the user
preference under multiple behaviors. Meanwhile, Xia et al.
proposedMB-GMN (graphmeta network for multi-behavior
recommendation [12]), they adaptmeta-learning to capturing
semantic transfer relationships between different behaviors,
which improves the ability of GCN for mining different
user behavior patterns. Later, Gu et al. proposed S-MBRec
(self-supervised graph neural networks for multi-behavior
recommendation [17]) by integrating self-supervised meth-
ods.They constructed several independent user-itembipartite
graph for different behaviors instead of constructing a unified
heterogeneous graph, and they designed a novel contrastive
learning tomodel the embedding commonality among differ-
ent behaviors. Latest, He et al. proposed CIGF (compressed
interaction graph for multi-behavior recommendation [19])
through the innovative learning of a compressed interac-
tion graph convolution network. This network is specifically
designed to explicitly capture andmodel high-order relations,
thereby refining the representation learning process for users
and items.

Based on the above discussion, existing multi-behavior
based recommendation methods are mainly based on GCN
and CL. They utilize GCN to capture user and item fea-
ture representation throughuser-item interactions of different
behaviors, and combine multiple behavior information to
learn the final user preferences. In addition, CL method is
used in these methods align different user behavior prefer-
ences by considering different user behaviors as different
contrastive views. Though these methods have achieved
remarkable success in the multi-behavior recommendation
task, they can’t capture the fine-grained user preference under
different behaviors, thus ignoring the fine-grained connec-
tions and differences among different behaviors.

Graph-based recommendation

Recently, architectures built on diverse variations of graph
neural networks (GNN) have exhibited trailblazing perfor-
mance for multiple graph-structured data based tasks [36–
39], there emerging a great number of GNN-based model
in the recommendation domain [5, 40–49]. For example,
Berg et al. earlier proposed a graph auto-encoder frame-

work namedGCMC (graph convolutional matrix completion
[41]), this framework innovatively addresses the rating pre-
diction challenge in recommendation systems by adopting
a link prediction approach. Later, He et al. proposed sev-
eral GCN-based methods for the recommendation domain
[5, 42, 45, 50]. They first proposed NGCF (neural graph col-
laborative filtering [5]) to exploit injecting the collaborative
information between user items into the embedding represen-
tation of users and items learned by GCN, and they utilized
high-order connectivity of user item interactions to build the
neural graph collaborative filtering framework. Then, they
further proposed LightGCN [50] by reducing several unnec-
essary and complex parts of the typical GCNmethods, which
obtains the final embeddings by simply propagating user
and item embeddings linearly. In addition, some works uti-
lized the GAT (graph attention network [51]) mechanism
to improve the aggregation operations [45–47]. For exam-
ple, Wang et al. proposed KGAT (knowledge graph attention
network [45]), which identifies the importance of different
neighbors through the attention mechanism in KG, this work
also models the high-order connectivity.

Inspired by the significant performance of GNN in the
recommendation task, we improve the existing GCN-based
multi-behavior recommendations by designing the disentan-
gled graph attention network, which can learn more fine-
grained user preference than existing GCN-based methods,
meanwhile capturing more useful information for learning
user preference in the target behavior from auxiliary behav-
iors.

Contrastive learning based recommendation

Contrastive learning (CL) aims to enhance the consensus
among various perspectives, with the goal of acquiring supe-
rior representations through self-supervision. Recently, CL
has achieved consequential improvements in various fields
[52–58], and some recent works have illustrated that CL
can improve the recommendation performance remarkable
[59–66]. For example, Yu et al. [59] observed that graph
augmentations are not necessary for the recommendation
tasks, they innovatively replaced the graph augmentations
with the uniform noises added for constructing contrastive
views, achieving superior experimental results than the CL
methods based on graph augmentations. Later, Lin et al.
proposed NCL (neighborhood-enriched contrastive learning
[60]) by integrating CL into the graph embedding learning
according to the graph structure. In this work, the positive
pairs are the structural neighbors of users (items), which
aims to enhance the graph representation learning by inte-
grating the structural information. Meanwhile, Xia et al.
proposed HCCF (hypergraph contrastive collaborative filter-
ing [61]), they first learned a hypergraph structure to reflect
dependency relationships, then they introduced a new hyper-
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graph contrastive learning architecture with complementary
self extracting views, which can effectively solves the over-
smoothing problem of the GCN. Recently, Cai et al. [62]
proposed lightGCL, they utilized SVD (single value decom-
position) method to generate the contrastive augmentation
views, instead of using the existing augmentation methods
such as random enhancement and heuristic enhancement,
alleviating issues that negatively impact the generality and
robustness of contrastive learning based recommendations.

Existing CL based methods mainly align user preferences
in a coarse-grained level. Different from them, we denoise
the user embeddings in each attribute domains, and aggregate
the denoised user embeddings in different attribute domains,
thus obtaining the finer-grained user embeddings for the con-
trastive learning.

Methodology

Problem definition

Let U stand for the users set, I symbolize items set, with |U |
and |I| characterizing the number of users and items respec-
tively. We define the bipartite graph G = (V , E) according
to the user-item interactions, where V = U ∪ I . In scenarios
involving multiple behaviors, we consider K (K ≥ 2) dis-
tinct user-item behaviors, with edges corresponding to the
kth(1 ≤ k ≤ K ) behavior as Ek . The bipartite G is par-
titioned into K subgraphs G1,G2, . . . ,GK , each aligned
with a specific interaction behavior type and formulated
as Gk = (V , Ek). G1,G2, . . . ,GK−1 denotes subgraphs
of auxiliary behaviors, GK denotes subgraph of the target
behavior. These behavioral subgraphs G1,G2, . . . ,GK are
represented by interaction matrices Y1,Y2, . . . ,YK , interac-
tion matrix Yk is the binary form defined following implicit
feedback recommendation [4]. We summarize the notations
used in this paper in Table 1.

ykui =
{
1, if u has interacted with i under behavior k;
0, otherwise.

(1)

Our purpose in this paper is to estimate the potential for
user-item interactions with respect to the target behavior
using multiple behaviors. The model utilizes historical user-
item interactions in both auxiliary and target behaviors as the
input, and output the likelihood that a user u will interact with
an item i under the target behavior. Finally, the model per-
forms recommendations under the target behavior according
to the likelihood. The task of our model is formulated as:

Input:Themulti-behavior interactionmatricesY1,Y2, . . . ,
YK under multiple K types of behaviors.

Output: A model that estimates the likelihood that a user
u will interact with an item i under the target behavior.

Proposedmodel

In this paper, we propose a disentangled and denoised model
for MBR, the architecture of this work is depicted in Fig. 2.
The user-item interaction matrices under different behav-
iors are used as input for the model, and user and item
embeddings fromdifferent behaviors are concatenated to rep-
resent the ultimate user and item embeddings. To achieve
this goal, the model incorporates the meticulous design of
the following modules. (i) Disentangled embedding gener-
ating. To model the fine-grained user preference from the
perspective of item attributes, we first inject item embed-
dings into several disentangled domains. We also design
the constraint function to ensure the independence of dif-
ferent attribute domains and prevent them from degenerating
into a single attribute space. Afterward, we obtain the ini-
tial disentangled user and item embeddings in each attribute
domain for multiple behaviors. (ii) Disentangled graph con-
volutional network. In each attribute domain, we first utilize
a user’s general preference in the target behavior to guide
the learning of the aggregation weights of user-item inter-
actions in auxiliary behaviors, learning the attractiveness of
different items to the user for specific attributes in auxil-
iary behaviors. Then, we incorporate these weights into the
GCN for the aggregation of user (item) nodes’ neighbors
to obtain user (item) embeddings in view of the attribute
domain. Finally, we aggregate user and item embeddings
in different attribute domains to obtain these embeddings
under multiple behaviors. Through DGCN, we can dis-
cover the item attributes that the user is truly interested
in and alleviate the noise information introduced by items
in auxiliary behaviors. (iii) Denoised contrastive learning.
For user and item embeddings in different attribute domains
under multiple behaviors, we first employ the attention
mechanism to estimate the importance of different attribute
domains in auxiliary behaviors, we assign a higher score
for the user embedding in a certain attribute domain when
this attribute in auxiliary behaviors achieves more user
attention for his/her target intent. Then we aggregate user
embeddings for different attribute domains according to
these attention scores to generate the denoised embeddings.
Finally, we design contrastive learning on these denoised
embeddings to align user preferences in auxiliary behav-
iors and target behavior. The aggregated user embeddings
from different attribute domains utilizing attention scores
are concatenated to the user embeddings learned through
DGCN to achieve the final user embeddings for multiple
behaviors.
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Table 1 The descriptions of
notations

Notation Description

U User set

I Item set

M Number of users

N Number of items

L Number of graph attention network layers

A Number of item attributes

Q Embedding matrix for the item embedding initialization

P Embedding matrix for the user embedding initialization

eu Initialized user embedding of user u

ei Initialized item embedding of item i

eu,a User embedding of user u for attribute a

ei,a Item embedding of item i for attribute a

eku User embedding of user u under the behavior k

eki Item embedding of item i under the behavior k

qu Final user embedding of user u

qi Final item embedding of item i

qu,a Query vector of user u for attribute a

eu,a
i,n Item embedding of nth item that have interacted with user u for attribute a

WQ , WK , WV Weight matrices of the self attention

Wa Weight matrix of the target behavior guided attention

Wb Weight matrix of the item embedding decomposed

Ma
u Projection matrix of user u′s embedding initialization for the attribute a

Wu Weight matrix of user u to obtain the final user embedding

Wi Weight matrix of item i to obtain the final item embedding

Disentangled embedding generating

As discussed in Sect. 1, the correlations between user prefer-
ences in different behaviors are mainly reflected in different
item attributes, and the noise data in auxiliary behaviors is
also intimately associated with item attributes. Therefore, it
is suitable to focus on the specific item attribute than the
entire item embedding without emphasis. Specifically, we
first obtain the initialized user and item embeddings, then we
disentangle them to generate the user and item embeddings
in each attribute domain.

User and item embedding initialization Consistent with
prevalent initialization methods used in existing recommen-
dation methods [67], we connect each user and item to their
respective identify embeddings. We utilize P ∈ R

M×D and
Q ∈ RN×D to represent the initialized embeddings of user’s
as well as items respectively, whereM denotes the number of
users, N denotes the number of items, d denotes the embed-
ding size. In addition, DU

u and DI
i are one-hot vectors for the

user u and item i , the initialized user and item embeddings
are denoted as below:

eu = PT DU
u

ei = QT DI
i

(2)

where T denotes the transposition operation, eu is the initial-
ized user embedding of the user u, ei is the initialized item
embedding of the item i .

Disentangled embedding generating In this work, we
argue that the user’s preference for items is mainly reflected
in their preference for specific item attributes. However, item
attributes in different recommendation scenarios are complex
and diverse, making it difficult to model unified attribute rep-
resentations. Therefore, we construct several disentangled
attribute domains to represent item attributes in the latent
semantic space. Inspired by the work [68], we can obtain the
item embeddings by decomposing the initial item embed-
ding for each attribute domain. Assuming that A is the set of
attributes that A = {1, 2, . . . , |A|} and |A| is the number of
attribute domains, we project the item embedding ei of item
i into the item embedding for attribute a ∈ A by employing
the projection matrix as below:

ei,a = Wbei
‖Wbei‖2

(3)
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Fig. 2 The architecture of our model

where ei,a ∈ R
d is the embedding of the item i in the

attribute domain a, Wb ∈ R
d×d denotes a projection matrix

of the attribute domain a, noted that the projection matrix
is shared by all items. Additional, the normalization for the
item embeddings is to ensure the subsequent calculations.

We encourage the separation of item embeddings in dif-
ferent attribute domains due to different attribute domains
should contain different information about item attributes,
otherwise several item embeddings will degenerate to the
equivalent of a single item embedding [69]. Hence, for supe-

rior model capacity and explainability, We incorporate an
independency loss to constrain the item embeddings for dif-
ferent attribute domains. Following the existing methods
such as [69], we adopt mutual information to measure the
correlations between two item embeddings. For each item
i , the constraint function for embeddings independence is
designed as below:

123



153 Page 8 of 23 Complex & Intelligent Systems (2025) 11 :153

Li
ind =

∑
b∈A

− log
exp (

s(ei,a ,ei,a)
τ

)∑
a′ ∈A exp (

s(ei,a ,ei,a′ )
τ

)
(4)

where s(·) is the function measuring the similarity of two
item embeddings in different attribute domains, τ is the tem-
perature parameter, s(·) is set as a cosine similarity function
as below:

s(e1, e2) = e1eT2
‖e1‖2‖e2‖2

. (5)

The final dependency loss are composed of the mutual
scores of all the items is as below:

Lind =
∑
i∈I

Li
ind . (6)

After decomposing the item embeddings, we perform ini-
tial representations of user representations in each attribute
domain in order to learn user embeddings regarding to differ-
ent item attributes. For each behavior k(k ≤ K ), we utilize
the transformation matrix Ma

u ∈ R
a×d×d to obtain the user

embedding as the initial user embedding for the GCN under
each behavior k as below:

eku,a = Ma
u eu (7)

where eku,a ∈ Ra×d is the initial user embeddingswith respect
to the attribute domain a under behavior k, it is also as an ini-
tial representation of the subsequent graph network learning.
The initial embedding of the item for the GCN under each
behavior k is as below:

eki,a = ei,a . (8)

Disentangled graph convolutional network

After obtaining the initial user and item embeddings in differ-
ent attribute domains, we then develop a disentangled graph
learning-based framework to model the fine-grained user
preference for specific item attributes under multiple behav-
iors. We perform a GCN in each view of attribute domain
under each behavior, meanwhile selecting the attributes of
items that are consistent with the user preference in the target
behavior. Specifically, we first calculate the target-behavior
guided weight to estimate the importance of different item
attributes that the user interacted with under auxiliary behav-
iors. This enables the model to concentrate more attention
on items engaged in auxiliary behaviors that express closer
resemblance to the user preference in the target behavior
regarding specific item attributes. Then, we integrate the
weight into the GCN to obtain final user and item embed-
dings,where aweightedmessage-passingmethod is designed

for the propagation of user and item embeddings. In the prop-
agating of user nodes towards specific attribute domains, if
the item embedding in the attribute domain is more closely
aligned with the user’s target behavior preference, the infor-
mation passed by the item to the user node should be assigned
a higher weight compared to other neighbor item nodes.

Target behavior guided weight To determine the score of
user u and its neighbor item node i in the attribute domain
a, our first step involves learning a query vector q that could
reflect u’s general preference reflected in the target behavior.
In our pursuit of understanding a user’s target behavior pref-
erence, we employ the average value of the embeddings of
all items that interacted with the user in this attribute domain
to obtain a query vector, serving as a robust representation of
the user’s behavioral preference. The function for calculating
the query vector q is here:

qK
u,a = mean{eu,K

i,1,a, e
u,K
i,2,a, . . . , e

u,K
i,n,a} (9)

where qK
u,a ∈ R

d denotes the general preference of user u

in attribute domain a under the target behavior K , eu,K
i,n,a ∈

Rd denotes the embedding of nth item node in the attribute
domain a that interacted with the user u under the target
behavior K , which is learned by Formula 8. Afterwards, we
use the learned general preference representation to calculate
the score of the user u and neighbor item i as below:

α
a,k
u,i = Wa[qK

u,a; eki,a]∑
j∈N k

u
Wa[qK

u,a; ekj,a]
, (10)

where N k
u denotes item neighbors set for the user u under

the behavior k, i, j ∈ N k
u denote the neighbor items i and j

for the user u under the behavior k(k < K ), eki,a, e
k
j,a ∈ Rd

denote embeddings of these items in the attribute domain
a under the behavior k(k < K ), Wa ∈ R

d×d demotes the
weight matrix, which is the hyper-parameter of the model,
[; ] denotes the concatenation of vectors.

Graph convolutional network Once the target behavior-
guided weights have been determined, we employ the GCN
as most existing MBR models to effectively aggregate the
neighbors of users and items in each view of item attribute
domain under multiple behaviors. For auxiliary behaviors,
the weights mentioned previously are incorporated during
the graph information propagation process. We design the
aggregation function under the specific auxiliary behavior
for user and item nodes as below:

ek,l+1
u,a =

∑
i∈N k

u

α
a,k
u,i e

k,l
i,a

ek,l+1
i,a =

∑
u∈N k

i

α
a,k
u,i e

k,l
u,a

(11)
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where N k
u and N k

i denote the neighbor nodes set of user u
and item i under the behavior k(k < K ), l denotes the layer
number of the GCN, ek,l+1

u,a ∈ R
d and ek,l+1

i,a ∈ R
d denote

embeddings of the user u and item i in the (l + 1)th layer
under the behavior k(k < K ), αa,k

u,i is the weighted obtained
through Formula 10.

For the GCN towards the target behavior, the α
a,k
u,i is

assigned as the value 1, which is in line with the Light-
GCN. For the attribute domains A = {1, 2, . . . , |A|} under
the behavior k. Finally, the user and item embeddings in
view of attribute domains are derived from the last layer L
of GCN, denoted as {eku,1, e

k
u,2, . . . , e

k
u,|A|}. By aggregating

these embeddings in |A| attribute domains, the ultimate user
and item embeddings for the behavior k are detailed as below:

eku =
∑
a∈A

eku,a

eki =
∑
a∈A

eki,a .
(12)

Utilizing the aforementioned function, we can derive
the user and item embeddings for behaviors spanning
{1, 2, . . . , K }, represented as {e1u, e2u, . . . , eKu }.

Denoised contrastive learning

As mentioned in the introduction, CL can effectively syn-
chronize user embeddings in multiple behaviors, which
motivates us to employ CL technique for the embeddings
alignment across different behaviors. However, the user
embeddings in auxiliary behaviors contain information that
is less relevant to the user embedding in the target behavior,
which refers to the noise data for the CL. The noise data will
degrade the distinguishing ability for positive and negative
samples in CL, thus can not align user preference in multiple
behaviors effectively.

In response, we introduce the denoised contrastive learn-
ing (DCL), which conducts contrastive learning to focus
more on the consistent parts between user preferences in aux-
iliary behaviors and target behavior, reducing the impact of
irrelevant information that brings noise data. Specifically, we
first introduce the attention mechanism to obtain attention
scores of user embeddings for different attribute domains
in auxiliary behaviors, these scores reflect the importance
of different attribute domains in auxiliary behaviors towards
the user preference in the target behavior. Then, the attention
scores are used to aggregating user embeddings for different
attribute domains, thus we can obtain the final denoised user
embeddings in auxiliary behaviors. Finally, we conduct CL
utilizing these denoised user embeddings in auxiliary behav-
iors to align user preferences in multiple behaviors precisely.

Multi-attributes linearized attention mechanism Inspired
by the self attention designed by [70, 71], we adopt the

multi-attributes linearized attention mechanism to imple-
ment efficient and simple attention mechanism. We view the
user embeddings in the target behavior as Q, user embed-
dings in the auxiliary behavior as K and V , and we obtain
Q, K and V as below:

Q = WQ · EK
u

K = WK · Ek
u

V = WV · Ek
u

(13)

where EK
u ∈ R

|A|×d denotes user feature matrix of tar-
get behavior, Ek

u ∈ R
|A|×d denotes user feature matrix

of kth auxiliary behavior, which is the concatenation of
eku,1, e

k
u,2, . . . , e

k
u,|A| learned in views of different item

attribute domains. |A| denotes the number of the attribute
domains. WQ,WK ,WV ∈ R

d×d denotes learned parameter
matrices.

Then, we employ the linearized attention mechanism on
the user feature of kth auxiliary behavior for the attribute a,
using the function as follows to compute the attentive embed-
dings:

Êk
u = (φ(Q)φ(KT ))V (14)

where φ() is the feature map function. Noted that linearized
attention mechanism we adopt can effectively reduce model
complexity. We adopt the function as below to measure the
positive similarity:

φ(x) = elu(x) + 1 (15)

where Êk
u ∈ R

|A|×d is consisted of the slices of [Êk
u,1,

Êk
u,2, . . . , Ê

k
u,|A|], and |A| denotes the number of attribute

domains. The final user feature matrices of the auxiliary
behavior êku ∈ R

d can be computed by adding slices of the
matrix for the attribute dimension as below:

êku =
∑
a∈A

Êk
u,a . (16)

Contrastive learning. Based on the attention mechanism,
we can obtain the denoised user embeddings in auxiliary
behaviors as ê1u, ê

2
u, . . . , ê

K−1
u , and the user embeddings in

the target behavior eKu . Ultimately, we utilize the CL to align
user preferences in auxiliary behaviors and target behav-
ior for a batch of users U . The contrastive learning loss
designed follows the previous contrastive learning based rec-
ommendations such as [17, 72], and the final InfoNCE-based
contrastive learning loss for the behavior k is designed as
below:

Luser
cl_k =

∑
u∈U

− log
exp (φ(êku, e

K
u )/τ)∑

v∈U\u exp (φ(êkv, e
K
u )/τ)

(17)
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where k denotes the kth auxiliary behavior, τ is the temper-
ature hyper-parameter, which is set as 0.5 in this work, φ()

denotes the inner-product of two vectors, v ∈ U\u denotes
the users except the user u in the user set. The goal of the
function is tominimize the difference of preference represen-
tations in the user’s auxiliary behavior and the target behavior.
Due to the embeddings used for CL are denoised for differ-
ent attribute domains, themodel can align the user preference
between the auxiliary behavior and the target behavior in a
fine-grained way. We obtain the final CL loss by summing
all the CL losses of auxiliary behaviors. The final contrastive
learning function is designed as below:

Lcl =
K−1∑
k=1

Luser
cl_k . (18)

Model optimization

For embeddings learned from DGCN, we concentrate user
and item embeddings in multiple behaviors, then utilize the
weight matrix to obtain user and item embeddings qgu and qi
as below:

qgu = Wu([e1u; e2u; . . . ; eKu ]) + bu

qi = Wi ([e1i ; e2i ; . . . ; eKi ]) + bi
(19)

where e1u, e
2
u, . . . , e

K
u , e1i , e

2
i , . . . , e

K
i denotes user and item

embeddings in multiple behaviors learned by Formula 12,
Wu ∈ R

(K×d)×d and Wi ∈ R
(K×d)×d are weight matrices

for the learned hyper-parameters, bu ∈ R
d , bi ∈ R

d are bias
parameters.

In addition, we further take advantage of the denoised user
embeddings learned in DCL to represent user preference in
auxiliary behaviors, and we adopt the same strategy to obtain
denoised user embeddings qdu as below:

qdu = W
′
u([ê1u; ê2u; . . . ; êK−1

u ; eKu ]) + b
′
u (20)

where ê1u, ê
2
u, . . . , e

K
u , . . . , êK−1

u denotes user embeddings in
auxiliary behaviors learned by Formula 16,W

′
u ∈ R

(K×d)×d

is weight matrix, b
′
u ∈ R

d is bias parameter.
We incorporate the two user representations mentioned

above to determine the ultimate user preference. The combi-
nation of these two features can achieve denoised learning for
different attribute domains at both item-level and behavior-
level. Consequently, it leads to a more precise and enriched
understanding of user preferences. The final user embedding
qu is represented as below:

qu = qgu + qdu . (21)

Afterwards, we optimize the model based on the user his-
tory records in the target behavior (e.g. purchase behavior).
We utilize the BPR loss [31] for the model optimization,
which is denoted as below:

Lbpr =
∑

(u,i, j)∈O
log{σ(qTu qi − qTu q j )}, (22)

where O denotes the training sample set, u denotes the user u,
i denotes the positive sampled item i , j denotes the negative
sampled item j , T means the transposition operation of vec-
tors. qu is the embedding of the user u, qi is the embedding of
the positive item i , q j is the embedding of the negative item
j . The goal of the equation is to maximize the differences of
user preferences towards positive items and negative items.
Ultimately, our model is optimized by the joint function as
below:

L = Lbpr + αLcl + βLind + μ‖ � ‖22 (23)

where α, β and μ are hyper-parameters to control the pro-
portion of contrastive learning loss, dependency loss and �2
regularization, respectively.

The complete process of our model is detailed in Algo-
rithm 1, the model’s output provides the score which denotes
the likelihood that a user will interact with an item under
the target behavior. Subsequently, we rank the candidate
items according to their scores, ultimately selecting the Top-
N items for recommendations.

Complexity analysis

The computational expense of our model is primarily
attributed to the GCN and the multi-attributes linearized
attention mechanism. As for the GCN. The quantity of
edges of the graph is represented as |E |, the variety of
behavior types is indicated as |B|, the number of the
attribute domains is |A|. We also denote M and N to
indicate the number of users and items respectively. The
number of GCN layers L and the embedding size D
are also needed to compute the computational expense.
The computational expense of constructing the adjacency
matrix is O(2|E ||A||B|), the computational expense of
the target-guided behavior weight is O(2|E ||A||B|NDL),
the computational expense of the graph convolution is
2|E ||A||B|LD, thus the computational expense of the
GCN in our model is O(2|E ||B||A| + 2|E ||B||A|NDL +
2|E ||A||B|LD). The computational expense of the lin-
earized attention mechanism in our model is O(M |A|D2)

[71]. Therefore, the total computational expense of our
model is approximately O(2|E ||A||B|+2|E ||A||B|NDL+
2|E ||A||B|LD+M |A|D2). Comparing to other GCN-based
methods, our model can achieve competitive performance
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Algorithm 1 Algorithm of DMR model
Require: Interaction matrices Y1, Y2,…, YK under multiple types of

behaviors, the number of attribute domains |A|, number of layers of
GCN L , user U and item set I.

Ensure: The estimated score of user u ∈ U towards item i ∈ I
1: Initialize user embedding eu and item embedding ei for u ∈ U and

i ∈ I.
2: for epoch ← 0, 1, 2... do
3: for step ← 0, 1, 2... do
4: //Generate disentangled user and item embeddings
5: for k ← 0, 1, 2..., K do
6: Get user u and item i embeddings for behavior k: eku =

eu, i ku = iu
7: for a ← 0, 1, 2..., |A| do
8: Get user and item embeddings for attribute domain a by

Eqs. 3–8
9: Calculate the dependency loss by Eqs. 4–6
10: end for
11: end for
12: //Disentangled graph convolutional network
13: for k ← 0, 1, 2..., K do
14: for a ← 0, 1, 2..., |A| do
15: for u ∈ U do
16: for i ∈ I do
17: Get target behavior guided weight by Eqs. 9, 10
18: end for
19: end for
20: for u ∈ U do
21: for l ∈ L do
22: Get user embedding ek,l+1

u,a by Eq. 11
23: end for
24: end for
25: for i ∈ I do
26: for l ∈ L do
27: Get item embedding ek,l+1

i,a by Eq. 11
28: end for
29: end for
30: //Denoised Contrastive Learning
31: Get the user embeddings under auxiliary behavior by

Eqs. 13–15
32: Aggregate user embeddings under auxiliary behavior

by Eq. 16
33: Calculate the contrastive learning loss by Eqs. 17, 18
34: end for
35: Aggregate user embedding eku by Eq. 12
36: Aggregate item embedding eki by Eq. 12
37: end for
38: Get ultimate user and item embeddings by Eqs. 19, 20
39: Calculate the BPR loss by Eq. 22
40: Get the ultimate loss by Eq. 23
41: end for
42: end for

without much sacrifice on the computational complexity. In
addition, the attribute domain is a latent semantic represen-
tation that is not affected by the number of product attributes
in the real recommendation scenarios, and the number of
attribute domains is limited through experimental analysis.
Therefore, our model achieves a computational complexity
similar to most models and is suitable for most recommen-
dation scenarios.

Experiment

We conduct comprehensive experiments on three publicly
available datasets to estimate the efficacy of our model.
Specifically, we endeavor to address the following research
inquiries:

RQ1: How effective is our model in MBR task compared
to existing advanced methods?

RQ2: What is the significance of each module in our
model towards the recommendation effectiveness?

RQ3:What influences do the individual hyper-parameters
have on the recommendation performance?

RQ4:Howdomultiple behaviors contribute to the efficacy
of the recommendation?

RQ5: How does the model perform under different spar-
sity radios?

RQ6: How does the attention mechanism works in this
paper?

RQ7: How does the model perform with different strate-
gies of the contrastive learning?

Experimental settings

Dataset

Weadopt two real-world datasets in theMBRdomain:Retail-
rocket and Beibei. These two datasets are already publicly
available datasets.

1. Retailrocket. This benchmark dataset is obtained from
the Retailrocket platform,1 including user activities such
as Page View, Add-to-Cart, and Transaction. We adopt
the leave-one strategy to deal with this dataset. For each
user, we select one user-item interaction for validation
and another one user-item interaction for testing.

2. Beibei. This dataset is collected from Beibei2 that is the
primary online retail platform for baby products inChina,
we adopt the dataset published at. 3 This dataset mainly
contains View, Cart, and Purchase behaviors. The dataset
has been already divided into train and test parts, and we
use the leave one strategy to select one user-item inter-
action record from the train set for each user to compose
the validation set.

The statistics of the two datasets are detailed in Table 2. In
two datasets, transaction and purchase behavior are viewed
as the target behavior, with other forms of interactions being
considered as auxiliary behaviors. For duplicate data in the

1 https://tianchi.aliyun.com/dataset/146321.
2 https://www.beibei.com/.
3 https://github.com/MC-CV/CIGF/tree/main/Datasets/beibei.
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Table 2 The statistics of datasets

Dataset #Users #Items Behaviors

Retailrocket 2174 30113 {View,Cart,Transaction}

Beibei 21716 7977 {View,Cart,Purchase}

training set, we only retain the first occurrence of user-item
interactions.

Baselines

We compare our model with numerous state-of-the-art rec-
ommendation models. The baseline can be divided into two
categories: single-behavior models and multi-behavior mod-
els. We provide a succinct overview of these methods as
follows.

Single-behavior based models:

• BPR [31]. It is a pairwise learning framework for implicit
feedback recommendation, which is widely used for the
item recommendation.

• NCF [4]. It is a neural framework for implicit feedback
recommendation, which utilizes deep neural network to
model collaborate information in user-item interactions.

• LightGCN [50]. It is a GCN based method, which simply
adopts the linear aggregations to obtain the ultimate node
embeddings, also removes the no-linear activation part of
the typical GCN methods.

• SGL [72]. It is a method that combines contrastive
learning and graph representation learning, achieving
data augmentation through three methods include node
dropout, edgedropout, and randomwalk,which improves
the performance of graph representation learning through
contrastive learning effectively.

Multi-behavior based models:

• MBGMN [12]: It employs a graphmeta network to derive
user and item feature representations by leveraging a uni-
fied heterogeneous user-item interaction graph, which
enables the capture of comprehensive information of
users and items, taking into account diverse behavioral
information.

• S-MBRec [17]: It adopts GCN to derive user and item
embeddings from numerous dependent user-item graphs,
it also designs a star-style contrastive learning to align
user preferences for different behaviors.

• CIGF [19]: It proposes a framework founded on a com-
pressed interaction graph. This model can effectively
addresses the challenges of imbalanced data and the
sparse distribution of the target behavior.

Evaluation metrics

We utilize recall and NDCG to evaluate the performance of
our model and all the baselines for each user, and the final
results of two metrics are the average values over all users.

• Recall@N: It measures how many relevant instances
are recommended within the Top-N results. This met-
ric focuses on whether the items that users are interested
in can be captured by the model.

Recall@N = |S(N ; u)|
T (u)

(24)

where S(N ; u) denotes the number of items appear in
the recommended list (N items) that have already been
interacted with the user u, T (u) denotes the items that
have already been interacted with the user u.

• NDCG@N: It assigns higher scores to hits that appear
at elevated positions within the ranking list. This metric
focuses on the position of the items in the recommended
list that users are interested in.

DCG@N =
K∑
i=1

21{u(i)=1}−1

log(i + 1)

NDCG@N = 1

Z
DCG@N

(25)

where 1{} indicates the indicator function, u(i) = 1
denotes the function value is 1 if user u interacts with the
item i , N denotes the number of items recommended, Z
denotes normalization parameter.

Parameter settings

In our experiments, the grid search is introduced to tune
different hyper-parameters, including learning rate among
[1e−1, 1e−2, 1e−3, 1e−4], the regularization weight among
[1e−1, 1e−2, 1e−3], the number of attribute domains in
the range of [2, 3, 4, 5, 6, 7, 8, 9, 10], CL parameters from
[1e4, 1e−3, 1e−2, 1e−1, 1, 10], and the number of the GCN
layer in the range of [1, 2, 3]. In addition,we fix the the batch-
size and embedding size as 1024 and 32 for all the models,
and fix the seed as 2023. Other hyper-parameters within the
baselines are fine-tuned following the their original publica-
tions. The epoch number of themodel running is set as 20 and
we adopt the early-stopping strategy to avoid the over-fitting
problem. We train our model on the train set, then valid the
model on the validation set, save the best-performing param-
eters and obtain the model accuracies on the test set. On the
Retailrocket dataset, the learning rate is set as 1e−3, the reg-
ularization weight is set as 1e−3, the number of the GCN
layer is set as 2, the number of attribute domains is set as 3,
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Table 3 Size of trainable parameters for single-behavior models

Method BPR NCF LightGCN SGL

Retailrocket 516592 517136 516592 1033184

Beibei 475088 475633 475088 950176

Table 4 Size of trainable parameters for multi-behavior models

Method MBGMN SMBRec CIGF DMR

Retailrocket 840192 3171308 1027048 3120486

Beibei 798688 2922284 854040 2871462

the CL parameter is set as 1e−3. On the Beibei dataset, the
learning rate is set as 1e−2, the regularization weight is set
as 1e−3, the number of the GCN layer is set as 2, the number
of attribute domains is set as 3, the CL parameter is set as
1e−1. The comparison of the number of trainable parameters
is shown in Tables 3, 4. Next, we summarize and analyze the
experimental results on the test set.

Overall performance (RQ1)

To answer RQ1, we first perform experiments to compare the
performance of our model DMR with all baselines, and the
overall performance comparison results on two datasets are
presented in Tables 5, 6, 7, and 8. The results produced by
the best baseline and the best performer in each column are
underlined and boldfaced, respectively. The last line repre-
sents the improvements proportions of our model compared
to the best baseline. The results produced by the best base-
line and the best performer in each column are underlined
and boldfaced, respectively. These are the inferences we can
draw from the results:

Overall, DMR achieves the best performances on two
datasets. It can be seen that DMR improves on average
3.12% on the Retailrocket dataset and 3.28% on the Beibei
dataset over the second best baseline, specifically improves
approximately on average 3.75% and 2.49% respectively for
Recall and NDCG metrics on Retailrocket dataset, 3.76%
and 2.80% for Recall and NDCG metrics on the Beibei
dataset. It can be seen that our model is stronger than
current advanced research methods generally with obvious
improvements on two metrics. On the Retailrocket dataset,
our model exhibits remarkable enhancements for Recall@10
and Recall@20 metrics with 4.45% and 7.74%, respectively.
On the Beibei dataset, it also shows significant improve-
ments for Recall@10 and NDCG@40 metrics with 6.89%
and 6.91%. These results demonstrate the effectiveness of
our model in augmenting the performance of multi-behavior
recommendations especially with limited numbers of recom-
mendation list length. In addition, we also notice that when
the length of the recommendation list is set as 80, the perfor-

mance improvements of our model is not significant as other
conditions. This may be because when the length of the rec-
ommendation list is too long, leading to the probability of
random hits is higher, and the ability of the model itself to
improve performance is no longer as significant. In addition,
the metrics in our work for all models are at the range of
1–5% on two datasets, The range of metrics are determined
by the characteristics of the dataset. When calculating met-
rics, negative samples refer to all items in the dataset, so the
number of candidate items to some extent determines the
range of metrics. And this result range is consistent with the
results obtained by other methods using these two datasets.
By comparing the performance improvements of the model
with baselines, we can verify the effectiveness of the model.

Among all the single-behavior recommendation mod-
els, LightGCN performs much better than BPR and NCF
methods. This demonstrates the crucial role of higher-order
neighbors’ information in enhancing the efficacy of user and
item embedding learning for recommendations. It can also
be seen that LightGCN and SGL achieve similar perfor-
mance on two datasets, which demonstrates GCN and CL
can improve the recommendation performance effectively.
We can observe that all the multi-behavior baselines in our
experiment achieve superior performances than all the single-
behavior models on two datasets, which demonstrates the
potential of multi-behavior information for enhancing rec-
ommendation accuracy.

Among all the multi-behavior recommendation models,
MBGMN and CIGF all utilize graph neural network, while
CIGF is superior over MBGMN on two datasets, which is
probably due to CIGF can capture rich relationships between
different behaviors by modeling high-order GCN, instead
of the typical GCN adopted by MBGMN. CIGF achieves
best performances in most cases, it improves the second
best baseline S-MBRec by 2.22% and 6.39% for Recall and
NDCG metrics on two datasets on average, and achieves
4.31% improvement on average. Our method achieves simi-
lar improvements with CIGF, but the performance of CIFG
is not always better than S-MBRec in all cases. Comparing
with it, our method achieves significant improvements in all
cases, which also proves that our mode’s ability for improv-
ing the MBR models. We can also observe that S-MBRec
performs better than MBGMN on the Beibei dataset for all
metrics, despite MBGMN achieving superior Recall@20,
Recall@40, NDCG@10, and NDCG@20 results on Retail-
rocket dataset, S-MBRec improves 1.6% than MBGMN on
average. This reveals that contrastive learning is instrumen-
tal in optimizing the performance of MBR models, which is
because CL can help to capture similar preferences across
different user behaviors and reduce noise data in auxiliary
behaviors.

In conclusion, the performance evaluations conducted by
all the implementedmethods yield the following insights: (1)
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Table 5 Overall performance
comparisons on Retailrocket
dataset for recall metric

Metric Recall@10 Recall@20 Recall@40 Recall@80 Average

Single-behavior

BPR 0.0225 0.0299 0.0363 0.0428 0.0329

NCF 0.0244 0.0359 0.0391 0.0543 0.0384

LightGCN 0.0271 0.0290 0.0336 0.0400 0.0324

SGL 0.0258 0.0290 0.0373 0.0451 0.0343

Multi-behavior

MBGMN 0.0400 0.0465 0.0538 0.0667 0.0518

S-MBRec 0.0405 0.0455 0.0570 0.0722 0.0538

CIGF 0.0409 0.0465 0.0567 0.0741 0.0546

DMR 0.0423 0.0501 0.0580 0.0745 0.0562

Imp(%) 4.45 7.74 2.29 0.53 3.75

Table 6 Overall performance
comparisons on Retailrocket
dataset for NDCG metric

Metric NDCG@10 NDCG@20 NDCG@40 NDCG@80 Average

Single-behavior

BPR 0.0140 0.0159 0.0172 0.0183 0.0164

NCF 0.0123 0.0154 0.0160 0.0191 0.0202

LightGCN 0.0162 0.0166 0.0176 0.0187 0.0173

SGL 0.0154 0.0162 0.0178 0.0191 0.0171

Multi-behavior

MBGMN 0.0222 0.0239 0.0254 0.0276 0.0248

S-MBRec 0.0208 0.0238 0.0258 0.0289 0.0248

CIGF 0.0228 0.0255 0.0263 0.0286 0.0258

DMR 0.0238 0.0261 0.0268 0.0292 0.0264

Imp(%) 2.63 4.39 1.90 1.03 2.48

Table 7 Overall performance
comparisons on Beibei dataset
for Recall metric

Metric Recall@10 Recall@20 Recall@40 Recall@80 Average

Single-behavior

BPR 0.0172 0.0223 0.0585 0.1229 0.0552

NCF 0.0263 0.0423 0.0745 0.1216 0.0662

LightGCN 0.0291 0.0437 0.0647 0.0916 0.0572

SGL 0.0303 0.0395 0.0529 0.0668 0.0474

Multi-behavior

MBGMN 0.0400 0.0633 0.0965 0.1514 0.0878

S-MBRec 0.0412 0.0643 0.0981 0.1515 0.0888

CIGF 0.0421 0.0689 0.1097 0.1785 0.0998

DMR 0.0450 0.0704 0.1125 0.1846 0.1031

Imp(%) 6.89 2.17 2.55 3.42 3.76

multi-behavior based models are superior to single-behavior
based models by extracting more useful information from
multiple user behaviors. (2)Modelingmulti-behavioral inter-
actions using GCN is an effective approach, (3) contrastive
learning between multiple behaviors can enhance the perfor-
mance of MBR trough consistency learning among multiple
behaviors.

Ablation study (RQ2)

To answer RQ2, we evaluate the efficacy of each designed
module incorporated into our model by examining three dis-
tinct variants:
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Table 8 Overall performance
comparisons on Beibei dataset
for NDCG metric

Metric NDCG@10 NDCG@20 NDCG@40 NDCG@80 Average

Single-behavior

BPR 0.0062 0.0075 0.0148 0.0256 0.0135

NCF 0.0115 0.0155 0.0219 0.0300 0.0197

LightGCN 0.0153 0.0189 0.0232 0.0278 0.0213

SGL 0.0174 0.0198 0.0225 0.0249 0.0212

Multi-behavior

MBGMN 0.0228 0.0292 0.0314 0.0407 0.0310

S-MBRec 0.0238 0.0295 0.0347 0.0458 0.0335

CIGF 0.0228 0.0303 0.0362 0.0501 0.0349

DMR 0.0243 0.0309 0.0387 0.0502 0.0360

Imp(%) 2.10 1.98 6.91 0.19 2.80

• w/o target behavior-guided weight (TW):We remove the
weight in the GCN in our model, replacing our designed
graph convolutional module with LightGCN method.

• w/omulti-attributes linearizedattentionmechanism (MLAM):
We remove the attention mechanism in the contrastive
learning, replace the denoised contrastive learning with
universal contrastive learning.

• w/o CL loss: We remove the contrastive learning loss of
our model.

The results of the ablation study are presented in Tables
9, 10, 11, and 12. Comprehensively, the entire model leads
to the best performance on two datasets, illustrating that the
integration of three modules significantly advances perfor-
mances ofMBRmodels. In addition, we found that removing
TW or MLAM all resulted in a decrease in the model per-
formance, indicating that the denoising learning of these two
modules are useful for enhancing the model performance.
Next, we will analyze the contributions of each component
as follows:

On the Beibei dataset, There’s a substantial decline in
model efficacy for Recall@20 and Recall@40 metrics when
we removed TW, and the full model improves 1.3% than
the model without TW on average for all metrics. On the
Retailrocket dataset, the model without TW achieves supe-
rior performance for Recall@20, while still performs worse
than the full model in most cases. Results on both two
datasets demonstrate the advantageous of the TW module
we designed. As for the situation that the model without TW
module performs better than the full model, it is probably
due to over-smoothing problem for the weighted GCN. In
addition, the model without TW still achieves superior per-
formance than MBGMN and SMBRec, which demonstrates
the combination of the CL and MLAM is also important for
improving the model performance.

Additionally, the full model improves 6.78% and 3.47%
on Beibei and Retailrocket datasets respectively than the

model without CL, 6.03% and 2.93% than the model with-
out MLAM. This observations indicate that CL and MLAM
module both play an essential roles on the twodatasets.More-
over, the absence of MLAM in the model results in a more
significant decline in performance than the situation that CL
is omitted, which is probably due to the limitations of tra-
ditional CL when confronted with noise data. This result
demonstrates the denoised part in the CL is functional, and
the MLAM module we developed plays an essential role
in enhancing the ability of the CL in our model. When the
model removes TW, it still achieves superior performance,
which further indicate the model’s performance when CL
and MLAM are combined. This combination is observed to
chiefly enhance the NDCG metrics on two datasets, high-
lighting that denoised contrastive learning contributes to
discovering user interests while also ranking the items user
is interested at the top of the recommendation list.

Hyperparameter study (RQ3)

To answer RQ3, we conduct extensive experiments to inves-
tigate the effect of different hyper-parameters, which include
the number of the GCN layer L , the number of the attribute
domain |A|, and the balance parameters α of the CL. In the
experiment, the random seeds are not fixed, and the maxi-
mum, minimum, and average values of the statistical results
are obtained through several experiments. The error of the
results is represented by the shaded area in Figs. 3, 4 and 5.
Overall, the model performance is characterized by a small
margin of error and high stability, which demonstrates the
robustness of our model. The following are the results and
analysis of the impact of different parameters on model per-
formance.

Effect of the number of layers The Recall@10 and
NDCG@10 results of all models on two datasets varying dif-
ferent values of L are shown in Fig. 3, where the number of
attribute domains is set as 3 for two datasets, and the value of
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Table 9 Ablation study
performance comparisons on
Retailrocket dataset for Recall
metric

Method Recall@10 Recall@20 Recall@40 Recall@80

w/o TW 0.0426 0.0478 0.0515 0.0713

w/o CL 0.0419 0.0460 0.0561 0.0704

w/o MLAM 0.0419 0.0465 0.0557 0.0708

Full model 0.0423 0.0501 0.0580 0.0745

Table 10 Ablation study
performance comparisons on
Retailrocket dataset for NDCG
metric

Method NDCG@10 NDCG@20 NDCG@40 NDCG@80

w/o TW 0.0238 0.0252 0.0260 0.0276

w/o CL 0.0235 0.0256 0.0267 0.0285

w/o MLAM 0.0237 0.0255 0.0262 0.0291

Full model 0.0238 0.0261 0.0268 0.0292

Table 11 Ablation study
performance comparisons on
Beibei dataset for Recall metric

Method Recall@10 Recall@20 Recall@40 Recall@80

w/o TW 0.0423 0.0611 0.1177 0.1973

w/o CL 0.0430 0.0672 0.1072 0.1799

w/o MLAM 0.0420 0.0667 0.1128 0.1817

Full model 0.0450 0.0704 0.1125 0.1846

α is set as 1e−3 and 1e−1 on Retailrocket and Beibei dataset.
Overall, our model outperforms other baselines with differ-
ent L values in most cases, the performance of the proposed
model is only slightly lower than that of the CIGF model
when the value of L is set as 3 and 5. We also found that
the performance changes of all models are more stable on
the Beibei dataset than on the Retailrocket dataset, which is
probably due to the Retailrocket dataset being sparser com-
pared to the Beibei dataset, and the larger values of L on
the sparser dataset would cause over-smoothing problems.
In addition, almost all the models achieve the best perfor-
mance when the value of L is set as 2 on two datasets, and
there is a decreasing trend when the value of L is larger
than 2. This is because the over-smoothing problemwill lead
to worse performance with the larger values of L . Among
all the baselines, the decreasing trend of the performance of
the CIGF model is more obvious compared to other mod-
els, which is probably due to the CIGF model relies entirely
on a complex GCN, making the consequences of differing
numbers of GCN layers on model effectiveness are more
apparent.

Effect of the numberof the attribute domainTheRecall@10
and NDCG@10 results of all the models on two datasets
varying different numbers of the attribute domain are shown
in Fig. 4, where the number of the value of L is set as 2
on two datasets, and the value of α is set as 1e−3 and 1e−1

on Retailrocket and Beibei datasets respectively. The results
indicate there is a declining trend in model performance as
the number of attribute domain increases from 2 to 5, the
model achieves the worst performance when the number of
the attribute domain is set as 5. Then, there is an increasing
trend of the model performance on two datasets when the
number of attribute domain is larger than 5. Further observa-
tion reveals a rising trend in the model’s efficacy as the value
of |A| increases from 2 to 3, which demonstrates that an ele-
vation in the number of attribute domains enables the model
to obtain more precise information comprehension. How-
ever, more noise data will be introduced with the increasing
number of attribute domains, which may be the reason for
the decrease in the model performance with the value of |A|
increasing from 3 to 5. With the increase of the value of
|A|, more useful information will be introduced, which is

Table 12 Ablation study
performance comparisons on
Beibei dataset for NDCG metric

Method Recall@10 Recall@20 Recall@40 Recall@80

w/o TW 0.0252 0.0297 0.0385 0.0520

w/o CL 0.0235 0.0296 0.0308 0.0459

w/o MLAM 0.0237 0.0300 0.0287 0.0516

Full model 0.0235 0.0309 0.0387 0.0502
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Fig. 3 Performance comparison with different numbers of layer. The above two figures show the model performance on the Retailrocket dataset,
and the following two figures show the model performance on the Beibei dataset

Fig. 4 Performance comparison with different numbers of attribute domains on two datasets

probably the reason the model performance becomes much
better. In addition, we can observe that the model achieves
similar performance when the value of |A| is less than 5
and larger than 5, which is probably due to the ability of
the dependent loss will be limited with the larger value of
|A|, leading to the item embeddings are similar for different
attribute domains, thus resulting in the model degradation.

Based on the above discussion, it can be observed that the
model achieves effective performance on both datasets when
the number of attribute domains is set as 2 and 3. Therefore,
there is no need to set the number of attribute domains too
large, a small number of attribute domains will ensure model
performancewhile reducingmodel complexity. Although the
performance of the model fluctuates under different numbers
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Fig. 5 Performance comparison with different values of α on two datasets

of attribute domains, it’s overall performance is relatively sta-
ble, e.g. the Recall metric on Beibei dataset fluctuates around
0.044. In addition, the model performance is still higher than
baselines under different numbers of attribute domains in
most cases, which demonstrates modeling user preference in
view of attribute domain is functional.

Effect of balance parameters The Recall@10 and
NDCG@10 results of all the models on two datasets varying
different values of α are shown in Fig. 5, where the number
of the value of L is set as 2 on two datasets, and the value of
|A| is set as 3 on two datasets respectively. This results reveal
that on the Retailrocket dataset, the best Recall outcomes are
achieved by setting α as 1e−3, while the best NDCG out-
comes are accomplished by setting α as 1. On the Beibei
dataset, our model’s performance for Recall metric is most
optimalwhen the value ofα equals 1e−1, and its performance
for NDCG metric is best when the value of α is set as 1e−4.
We found that the larger value of α is more beneficial for
improving the NDCG result on the Retailrocket dataset, and
ismore beneficial for improving the recall result on theBeibei
dataset. The explanation for these results can be attributed to
the following analysis: (1) the recall results for different α

values indicate the strength of the CL module for model’s
capacity, we can observe that the CL contributes more to
the Recall metric on the Beibei dataset than the Retailrocket
dataset. It is probably because there is a higher count of items
than users on theRetailrocket dataset, leading to theweight of
contrastive learning strategy built on user preferences is less
significant on the Retailrocket dataset than Beibei dataset.
Additionally, the Retailrocket dataset is sparser in compari-
son to the Beibei dataset, the Beibei dataset’s higher density
could lead to an increased presence of noise data, which con-
sequently calls for increased contrastive learning weights to
ensure proper denoised learning. (2) The NDCG results for
different α values indicate the strength of the CL module
for ranking the user’s interest, we can observe that there is
a decreasing trend of the NDCG results as the proportion of

CL increases on Retailrocket dataset. The underlying cause
of this phenomenon is likely the higher number of users than
items leads to a more impact of the CL in reducing the noise
data, whereas excessive CL will despite improving the recall
results but limits the potential of the model for capturing the
diverse user preference, thus compromising its effectiveness
in differentiating items in the recommended list.

Behaviors study (RQ4)

To analyze the effect of different behaviors, we conduct
experiments for different combinations of the behaviors,
the performance results are shown in Fig. 6. Observing the
results, it becomes evident that our model reaches peak per-
formance when embracing all user behaviors, this is mainly
due to more types of behaviors enable the model to precisely
estimate user preference through alleviating the data spar-
sity. Additionally, the model’s efficacy is heightened with
the use of the view behavior as opposed to the cart behavior,
which indicates that the view behavior ismore impactful than
the cart behavior in improving model performance. This is
because there contains various user-item information in the
view behavior, enabling the learning of diverse user prefer-
ences across numerous aspects and augmenting the model’s
capability in dealing with sparseness issues. When compar-
ing model performance between two datasets, it is apparent
that the performance advancement through the incorporation
of multiple behaviors is more significant on Beibei dataset
than Retailrocket dataset, especially for the Top@80 recom-
mendations. This is likely due to the Beibei dataset contains
more denser user-item interactions in auxiliary behaviors,
thus enabling the model to capture user preference utilizing
more abundant auxiliary information.
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Fig. 6 Contributions of different behaviors on two datasets. The above two figures show the model performance on the Retailrocket dataset, and
the following two figures show the model performance on the Beibei dataset

Sparsity study (RQ5)

To investigate the proposed model performance in dealing
with the sparsity problem, we conduct extensive experi-
ments on Beibei dataset with different dataset sparsity ratios.
Specifically, we removed 20%, 30%, 40%, 50%, 60%, 70%,
80% and 90% of the user-item interactions existing in the
data to simulate sparse situations, then compared the per-
formance of the DMR model and LightGCN model under
different sparsity ratios. The results are shown in Fig. 7. From
the results we can observe that there is a decrease trend of
two model performances with the increase of sparsity ratios.

However, the performance of our model is superior over
LightGCN with different sparsity ratios, indicating that our
model can effectively handle the sparsity problem than the
simple model. It is worth noting that when the data sparsity
is larger than 70%, the recall and NDCGmetrics of twomod-
els decrease significantly. This is due to in extremely sparse
situations, the model cannot be fully trained, which will lead
to over-fitting problem. We can also observe the the recall
and NDCG metrics of LightGCN decrease more obviously
than our model, which indicates that our model has signifi-
cant abilities in extremely sparse situations comparing with
simple models.
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Fig. 7 Performance comparison with different sparsity radios

Fig. 8 Attention analyze. The left side represents the item weights in different attribute domains under view behavior. The right side represents
the attention weights between view behavior and buy behavior for different attribute domains. The red boxes represent the parts with significant
weights

Fig. 9 Model performance on Beibei dataset for different contrastive learning strategies

Analysis of attentionmechanism (RQ6)

To analyze the effect of the attention mechanism in CL
and the target behavior-guided weighs in GCN. We con-
duct experiments on Beibei dataset and set the number of
attribute domains as 3. We randomly select the user-item
pairs (#20645, #6819) that are accurately predicted by the
model in the test set, thenwevisualize the attention scores and

graph aggregationweights for the user #20645, the results are
shown in Fig. 8. The left part in the figure is the hot heat fig-
ure of the target behavior-guided weighs in view of attribute
domain #3 under the view behavior. From the hot heat figure
we can observe the predicted item has the highest weight dur-
ing the propagation of GCN in the view of attribute domain
#3, which demonstrates ourmodel can effectively capture the
item importance through target-guidedmodule in view of the
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attribute domain. The right part in the figure shows the atten-
tion scores of three domains between the buy behavior and
the view behavior. We can observe that the attention mecha-
nism in CL achieves smaller weights of attribute domain #1
for the view behavior, while larger attention scores for both
attribute domain #2 and #3. This demonstrates domain #2
and #3 aremore important than domain #1 in the view behav-
ior, thus the attention mechanism can effectively reduce the
influence of the noisy attribute domains, which contributes
to the denoising learning in CL. In addition, the model can
ultimately learn higher weights for the item #6819 through
two modules, demonstrating both two modules are essential
for superior model performances.

Analysis of contrastive learning strategy (RQ7)

To explore the sensitivity of our model towards different CL
strategies, we conduct experiments on Beibei dataset with
two CL strategies varying different CL parameters α. We
adopt large margin contrastive learning loss (LMCL) and
InfoNCE contrastive learning loss (InfoNCE CL) respec-
tively for the Formula 17, the main idea of large margin
contrastive learning loss is to minimize the distance between
samples that belong to the same class, while maximizing
the distance between samples belonging to different cate-
gories, we utilize �2 to evaluate the distance between user
embeddings in two behaviors. The results for Recall@10
and NDCG@10 are shown in Fig. 9. From the results we
can observe that for Recall metric, InfoNCE CL is more
effective than LMCL for improving the model performance,
model with LMCL achieves best Recall values when the CL
parameter is set as 10, but still slightly lower than model
with InfoNCE CL. For NDCG metric, model with LMCL
achieves best NDCG value when the CL parameter is set as
10, which is superior to model with InfoNCE CL. Based on
the above discussions, we conclude that regardless of which
contrastive loss function is used, our model can achieve sig-
nificant performances.

Conclusion

In this paper, we propose a method that integrates disentan-
gled convolutional network anddenoised contrastive learning
to address theMBR task. Themethodology specifically starts
with the generation of disentangled domains based on item
attributes. Afterward, we learn user and item characteris-
tics by modeling the user-item connections in each distinct
attribute domain. Finally, we design the denoised contrastive
learning (DCL) to more accurately harmonize user prefer-
ences across multiple behaviors. Experiment results on two
datasets show our model improves on average 3.12% on the
Retailrocket dataset and 3.28% on the Beibei dataset over the

best baseline, which demonstrates the effectiveness of our
model, and the further study results demonstrate the effec-
tiveness of our model in fine-grained learning and denoised
learning. In the future, we will conduct research on the data
augmentation problem in the MBR task. We will simulta-
neously process noisy data from both the data and model
perspectives, also considering the sequential information to
deal with the noise issue more effectively.
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