0%

AutoESD a web tool for automatic editing sequence design for genetic manipulation of microorganisms

AutoESD:自动编辑化基因序列设计的在线工具

AutoESD: a web tool for automatic editing sequence design for genetic manipulation of microorganisms
Nucleic Acids Research
October 17, 2022.
Yi Yang, Yufeng Mao, Ruoyu Wang, Haoran Li, Ye Liu, Haijiao Cheng, Zhenkun Shi, Yu Wang, Meng Wang, Ping Zheng, Xiaoping Liao, Hongwu Ma

Abstract

Advances in genetic manipulation and genome engineering techniques have enabled on-demand targeted deletion, insertion, and substitution of DNA sequences. One important step in these techniques is the design of editing sequences (e.g. primers, homologous arms) to precisely target and manipulate DNA sequences of interest. Experimental biologists can employ multiple tools in a stepwise manner to assist editing sequence design (ESD), but this requires various software involving non-standardized data exchange and input/output formats. Moreover, necessary quality control steps might be overlooked by non-expert users. This approach is low-throughput and can be error-prone, which illustrates the need for an automated ESD system. In this paper, we introduce AutoESD (https://autoesd.biodesign.ac.cn/), which designs editing sequences for all steps of genetic manipulation of many common homologous-recombination techniques based on screening-markers. Notably, multiple types of manipulations for different targets (CDS or intergenic region) can be processed in one submission. Moreover, AutoESD has an entirely cloud-based serverless architecture, offering high reliability, robustness and scalability which is capable of parallelly processing hundreds of design tasks each having thousands of targets in minutes. To our knowledge, AutoESD is the first cloud platform enabling precise, automated, and high-throughput ESD across species, at any genomic locus for all manipulation types.

Attachment

AutoESD: a web tool for automatic editing sequence design for genetic manipulation of microorganisms

欢迎关注我的其它发布渠道